• Title/Summary/Keyword: Metallic Chassis

Search Result 2, Processing Time 0.015 seconds

Design of MediaFLO/GPS/Bluetooth Chassis Mode Antenna for Mobile Handset with Metallic Body (금속 몸체를 갖는 휴대단말기를 위한 MediaFLO/GPS/Bluethooth용 새시 모드 안테나의 설계)

  • Jung, Kang-Jae;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.829-834
    • /
    • 2009
  • In this paper, a HediaFLO/GPS/Bluetooth antenna is designed for mobile handset with metallic chassis. It is consisted of two metal plates with 7.6 mm gap, a connection plate and source between two plates. It can be analyzed as U-slot antenna of $0.5\;{\lambda}$, array of shorted patches each application bands. Simulated and measured performance of the proposed antenna show that it has enough possibility to reuse metallic chassis itself as radiator without any additional space for antenna.

Development of Chassis Parts Using High Toughness Micro-alloyed Steel (고인성 비조질강 샤시부품 개발)

  • Lee, Si-Yup;Kim, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.