• Title/Summary/Keyword: Metal-rolling

Search Result 200, Processing Time 0.031 seconds

Sensorless Automatic Gauge Control for a Reversing Rolling Mill (가역식 압연기의 센서없는 두께제어)

  • Kim, Eung-Seok;Kim, Kwang-Bae;Choy, Ick;Oh, Sang-Rok;Cho, Young-Jo;Lee, Jun-Soo;Lim, Mee-Seub;Park, Jung-Min;Ahn, Hyun-Sik;Kang, Il-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.442-444
    • /
    • 1993
  • The design problem of the AGC (Automatic Gauge Control) without a gauge-meter and a load-cell for a reversing rolling mill will be considered in this paper. The proposed controller in this paper is designed using only the linearly approximated relationships between a roll gab, a metal thickness and a pressing force. The data transfer delaying can be released by using these relationships. To show the validity of the proposed control method, the results of the computer simulation and the mathematical analysis will be presented in this paper.

  • PDF

Optimum Shape Design Techniques on Direct Roller of Molten Metal Considering Thickness Control of Width Direction (폭방향 두께제어를 고려한 용탕직접 압연로울의 최적형상 설계기법)

  • Kang, C.G.;Kim, Y.D.;Jung, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.73-85
    • /
    • 1997
  • The rolling force and roll deformation behavior in the twin roll type strip continuous casting process has been computed to estimate the thermal charcteristics of a caster roll. To calculation of rolling force, the relationship between flow stress and strain for a roll material and casting alloy are assumed as a function of strain-rate and temperature because mechanical properties of a casting materials depends on tempera- ture. The three dimensional thermal dlastic-plastic analysis of a cooling roll has also been carried out to obtain a roll stress and plastic strain distributions with the commercial finite element analysis package of ANSYS. Temperature fields data of caster roll which are provided by authors were used to estimated of roll deformation. Roll life considering thermal cycle is calculated by using thermal elastic-plastic analysis results. Roll life is proposed as a terms of a roll revolution in the caster roll with and without fine failure model on the roll surface. To obtain of plastic strain distributions of caster roll, thermomechan- ical properties of roll sleeve with a copper alloy is obtained by uniaxial tensile test for variation of temperature.

  • PDF

Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate (니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석)

  • C. Kim;S.J. Bae;H. Lee;H.J. Bong;K.S. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

Finite Element Analysis of Hot Strip Rolling Process (열간박판압연공정의 유한요소해석)

  • 강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.829-837
    • /
    • 1992
  • This paper presents a new approach for the analysis of hot strip rolling processes. The approach is based on the finite element method and capable of predicting velocity field in the strip, temperature field in the strip, temperature field in the roll, and roll pressure. Basic finite element formulations for heat transfer analysis are described with emphasis on the treatment of numerical instability resulting from a standard Galerkin formulation. Comparison with the theoretical solutions found in the literature is made for the evaluation of the accuracy of the temperature solutions. An iterative scheme is developed for dealing with strong correlations between the metal flow characteristics and the thermal behavior of the roll-strip system. A series of process simulations are carried out to investigate the effect of various process parameters including interface friction, interface heat transfer coefficient, roll speed, reduction in thickness, and spray zone. The results are shown and discussed.

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

A Study on Roll Forming Technology for Inner Structure Plate with Micro Dimple (미세 딤플 내부구조재 제작을 위한 롤 성형기술 연구)

  • Je T.J.;Kim H.J.;Kim B.H.;Huh B.W.;Seong D.Y.;Yang D.Y.;Choi D.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.326-332
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we made a roll forming machine which progressive forming possible and force measurement for a roll forming of the sheet metal forming. And we designed a roll molding that arrayed of embossing size 3mm in diameter fabricate micro dimple inner structure plate. We carried out forming experiment such as array change and thickness to sts304 sheet. Ultimately, this research developed inner structure plate of high stiffness.

Initial oxidation behavior in High temperature of low carbonsteel containing small amount Ni element. (미량 Ni 함유 저 합금강의 고온초기 산화거동)

  • 손근수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.179-184
    • /
    • 1999
  • When the steel containing Si is oxidated in hi temperature, Re2O3, Red scale is made on the metal side as the spike phase, and this scale invasion into matrix. Therefore, it affects the feature, after rolling. It is reported that the role of Si is FeO/Fe2SiO4 eutectic compound, but Si can not affect pure iron independently. There must be Ni, then the spike phase can exist. Prominence and depression made by Ni that is necessity at the process to work iron. Therefore, in this study after the change of the amount of Ni in pure iron and steel and oxidation, the structure of the oxide and the surface, and the distribution of the elements were considered. In conclusion, at 100$0^{\circ}C$, 110$0^{\circ}C$, 120$0^{\circ}C$ the curves of oxidation weight are all S curves. Especially, in the beginning of oxidation as the amount of Ni increase, the amount of oxidation also increase. Practical steel has less oxidation than pure steel added Ni. There is much FeO in Fe-Ni alloy, compare to practical steel which has much Fe3O4. Especially, we could know considerable Ni was concentrated on the metal side in Fe-Ni alloy, practical steel. and the surface of the scale.

  • PDF

Mechanical Properties of Stabilizer Link Using Composite Material and Metal (금속과 복합재료를 이용한 스태빌라이저 링크의 기계적 특성 평가)

  • Woo, Young-Man;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.877-882
    • /
    • 2011
  • Stabilizers are balancing equipment that can reduce the severe rolling of ships, vehicles, and aircraft. We manufactured a stabilizer link using a metal and a composite material with 25% POM-GF. We evaluated the strength of the stabilizer link via tensile, compressive, and ball-stud separation. The standard criteria were satisfied. Of four types of rod, knurled rod has the greatest strength. We improved the shape of the stabilizer-link body by a reanalysis of the injection molding.

Characteristics of Heavy Metal Emissions from Stationary Sources (고정오염원에서의 중금속 배출특성 연구)

  • Park, Jung-Min;Lee, Sang-Bo;Cha, Jun-Seok;Kwon, Oh-Sang;Lee, Sang-Hak
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.574-583
    • /
    • 2008
  • The results of HAPs emission data using TRI (Toxic Release Inventory), SODAM (Source Data Management system) were investigated and the emissions of 7 heavy metals from their sources and emission processes were also analyzed. Questionnaire for source data analysis as well as the stack sampling were carried out for 17 factories among 6 selected industrial types. The annual amount of emissions was estimated based on the measured concentration and flow rates. All sources were operated with high efficiency control devices and the concentration levels of all heavy metals were shown to be below 0.1 to of regulation standard. The highest emission source of heavy metals was steel manufacturing industry with the annual emission of 342.9 kg/yr and followed by hazardous waste incinerator, paint manufacturing, nonferrous metal manufacturing, rolling & press goods manufacturing and storage battery manufacturing. In the case of Hg, the emissions were quite significant from electric acros of steel manufacturing industry, although the concentration level was below the emission standard, showing the necessity of specific care for its management.

Manufacturing Process Design of Aluminum Alloy Bolt (알루미늄 합금 볼트의 제조 공정 설계)

  • Kim, Ji-Hwan;Chae, Soo-Won;Han, Seung-Sang;Son, Yo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.