• Title/Summary/Keyword: Metal-insulator-semiconductor

Search Result 200, Processing Time 0.026 seconds

Study of contact resistance using the transmission line method (TLM) pattern for metal of electrode (Cr/Ag & Ni) (TLM pattern을 사용한 Cr/Ag 및 Ni 전극에 따른 접합 저항 연구)

  • Hwang, Min-Young;Koo, Ki-Mo;Koo, Sun-Woo;Oh, Gyu-Jin;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.349-349
    • /
    • 2010
  • Great performance of many semiconductor devices requirs the use of low-resistance ohmic contact. Typically, transmission line method (TLM) patterns are used to measure the specific contact resistance between silicon and metal. In this works, we investigate contact resistance for metal dependent (Cr/Ag, Ni) using TLM pattern based on silicon-on-insulator (SOI) wafer. The electrode with Ni linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in accumulation part, but non-linearly increase in inversion part. In additional, the electrode with Cr/Ag linearly increases contact resistance as the pattern distance increase from $15{\mu}m$ to $75{\mu}m$ in inversion part, but non-linearly increase in accumulation part.

  • PDF

The Heat Treatment Effect of ZrO2 Buffer Layer on the Electrical Properties of Pt/SrBi2Ta2O9/ZrO2/Si Structure (ZrO2완충층의 후열처리 조건이 Pt/SrBi2Ta2O9/ZrO2/Si 구조의 전기적 특성에 미치는 영향)

  • 정우석;박철호;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.52-61
    • /
    • 2003
  • $SrBi_2Ta_2O_9(SBT)$and$ZrO_2$thin films for MFIS structure(Metal-Ferroelectric-Insulator-Semiconductor) were deposited by RF magnetron sputtering method. In order to investigate the effect of heat treatment of insulator layers and MFIS structure, the insulator layers were heat treated from $550^{circ}C;to; 850^{\circ}C$in conventional furnace or RTA furnace under$O_2$and Ar ambient, respectively. After then, C-V characteristics and leakage current were measured. The capacitor with 20 nm thick $ZrO_2$layer treated at RTA$750^{circ}C;in;O_2$ atmosphere had the largest memory window. The C-V and leakage current characteristics of the$Pt/SBT(260nm)/ZrO_2(20nm)/Si$structure were better than those of$Pt/SBT(260nm)/Si$ structure. These results showed that$ZrO_2$films took a role of buffer layer effectively.

Evaluation and Comparison of Nanocomposite Gate Insulator for Flexible Thin Film Transistor

  • Kim, Jin-Su;Jo, Seong-Won;Kim, Do-Il;Hwang, Byeong-Ung;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.278.1-278.1
    • /
    • 2014
  • Organic materials have been explored as the gate dielectric layers in thin film transistors (TFTs) of backplane devices for flexible display because of their inherent mechanical flexibility. However, those materials possess some disadvantages like low dielectric constant and thermal resistance, which might lead to high power consumption and instability. On the other hand, inorganic gate dielectrics show high dielectric constant despite their brittle property. In order to maintain advantages of both materials, it is essential to develop the alternative materials. In this work, we manufactured nanocomposite gate dielectrics composed of organic material and inorganic nanoparticle and integrated them into organic TFTs. For synthesis of nanocomposite gate dielectrics, polyimide (PI) was explored as the organic materials due to its superior thermal stability. Candidate nanoprticles (NPs) of halfnium oxide, titanium oxide and aluminium oxide were considered. In order to realize NP concentration dependent electrical characteristics, furthermore, we have synthesized the different types of nanocomposite gate dielectrics with varying ratio of each inorganic NPs. To analyze gate dielectric properties like the capacitance, metal-Insulator-metal (MIM) structures were prepared together with organic TFTs. The output and transfer characteristics of organic TFTs were monitored by using the semiconductor parameter analyzer (HP4145B), and capacitance and leakage current of MIM structures were measured by the LCR meter (B1500, Agilent). Effects of mechanical cyclic bending of 200,000 times and thermally heating at $400^{\circ}C$ for 1 hour were investigated to analyze mechanical and thermal stability of nanocomposite gate dielectrics. The results will be discussed in detail.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • Lee, Hyo-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Space Modulation of the Channel Current Density in IGFET by the Polarized Metal Gates (IGFET 채널 전류 밀도의 공간 변조 현상에 관한 연구)

  • 라극환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.31-36
    • /
    • 1984
  • Various efforts have been dedicated to obtain the negative impedances in microwave frequencies with semiconductor devices by many scientists for f: some passed decades, and as a result, many solid state microwave devices have been developed. But they all have much less maximum power ratings with respect to the vaccum tubes. In this paper, a MOSFET is proposed and studied, which have a periodic structure of multigates on the semiconductor via insulator. The hish electric field in the channel induces a voltage distribution on the gates by electrostatic coupling, and the polarization so induced between the gates is able to give a space modulation of the velocity of carriers or the current density in the channel, and as a natural consequence, a microwave amplifier with higher power ratings can be expected.

  • PDF

Study on the Trap Parameters according to the Nitridation Conditions of the Oxide Films (산화막의 질화 조건에 따른 트랩 파라미터에 관한 연구)

  • Yoon, Woon-Ha;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.473-478
    • /
    • 2016
  • In this paper, the MIS(: Metal-Insulator-Semiconductor) Capacitor with the nitrided-oxide by RTP are fabricated to investigate the carrier trap parameters due to avalanche electron injection. Two times turn-around phenomenon of the flatband voltage shift generated by the avalanche injection are observed. This shows that electron trapping occurs in the oxide film at the first stage. As the electron injection increases, the first turn-around occures due to a positive charge in the oxide layer. After further injection, the curves turns around once again by electron captured. Based on the experimental results, the carrier trapping model for system having multi-traps is proposed and is fitting with experimental data in order to determine trap parameter of nitrided-oxide.

Electrical Properties of MIM and MIS Structure using Carbon Nitride Films

  • Lee, Hyo-Ung;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Nano-structured carbon nitride $(CN_x)$ films were prepared by reactive RF magnetron sputtering with a DC bias at various deposition conditions, and the physical and electrical properties were investigated. FTIR spectrum indicated an ${alpha}C_3N_4$ peak in the films. The carbon nitride film deposited on Si substrate had a nano-structured surface morphology. The grain size was about 20 nm and the deposition rate was $1.7{\mu}m/hr$. When the $N_2/Ar$ ratio was 3/7, the level of nitrogen incorporation was 34.3 at%. The film had a low dielectric constant. The metal-insulator-semiconductor (MIS) capacitors that the carbon nitride was deposited as insulators, exhibited a typical C-V characteristics.

Conducting Polymer Material Characterization Using High Frequency Planar Transmission Line Measurement

  • Cho, Young-Seek;Franklin, Rhonda R.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.237-240
    • /
    • 2012
  • A conducting polymer, poly 3-hexylthiophene (P3HT) is characterized with the metal-insulator-semiconductor (MIS) measurement method and the high frequency planar circuit method. From the MIS measurement method, the relative dielectric constant of the P3HT film is estimated to be 4.4. For the high frequency planar circuit method, a coplanar waveguide is fabricated on the P3HT film. When applying +20 V to the CPW on P3HT film, the P3HT film is in accumulation mode and becomes lossy. The CPW on P3HT film is 1.5 dB lossier than the CPW on $SiO_2$ film without P3HT film at 50 GHz.

Highly Donor-doped LaxBa1-xTiO3 Ceramics

  • Korobova Nataly;Soh Dea-Wha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.18-21
    • /
    • 2003
  • Sol-gel processing of $BaTiO_3$ ceramics doped with La(0.01-1.00 at. $\%$) were prepared from metal barium, titanium n-butoxide and lanthanum iso-propoxide. Characterization of the sol-gel-derived powder using XRD, SEM is also reported. The obtained results showed that insulator to semiconductor transition for highly donor-doped barium titanate was closely related to the incorporation of donor into the grains and to the resultant grain size, which were significantly affected by the sinterability of $BaTiO_3$ powders and sintering conditions used.

Characterization of Al/$TiO_2$/Si MIS by APCVD (APCVD법으로 증착된 Al/$TiO_2$/Si MIS 특성)

  • Lee, Kwang-Soo;Jang, Kyung-Soo;Kim, Kyung-Hae;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.93-94
    • /
    • 2006
  • 나노급 CMOS 기술에서 high-k 물질을 이용하여 게이트 유전막을 형성하고자 하는 연구가 활발히 진행되고 있다. 본 논문에서는 high-k 물질인 $TiO_2$의 특성에 대한 연구를 수행하였다. $TiO_2$를 APCVD법으로 p-type 실리콘 기판에 $50{\AA}{\sim}300{\AA}$ 두께로 증착하였고, evaporator를 이용하여 $TiO_2$ 박막위에 Al을 증착하여 MIS소자를 제작하였다. 두께를 가변 하여 Capacitance-Voltage (C-V) 특성을 측정, 분석하였다.

  • PDF