• Title/Summary/Keyword: Metal-binding protein

Search Result 100, Processing Time 0.025 seconds

Accumulation of Heavy Metals in the Antarctic Clam, Laternula elliptica, and in the Korean coastal Clam, Ruditapes philppinarum

  • Lee, Yong-Seok;Jo, Yong-Hun;Byun, In-Seon;Kang, Bo-Ra;Kang, Se-Won;Jeong, Kye-Heon;Ji, Jung-Youn;Ahn, In-Yeong
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.63-68
    • /
    • 2004
  • Immunohistochemical and ultrastructural experiments were conducted to find out heavy metal accumulation in some selected organs such as the kidney, the digestive gland, and the gill of the Antarctic clam Laternula elliptica and R. philippinarum. According to the immunohistochemical study the subject organs of the clam showed reactions indicating the presence of MT (metallothionein), a metal-binding protein involved in metal detoxifying process. Examination under the transmission electron microscope also revealed that other ligands may play a role in metal accumulating and detoxifying process in L. elliptica and R. philippinarum. In the artificial exposure of the clam to Cd, the clams showed immediate subcellular responses. The level of the anti-MT reactions became higher in the proportion to the degree of pollution of their habitat and to the period of Cd exposure. These suggest that the two species can be used as efficient biomarkers for Cd exposure in the natural environment.

  • PDF

Evaluation of Antioxidative Activity of Agrimonia pilosa-Ledeb Leaves on Non-lipid Oxidative Damage

  • Hah, Dae-Sik;Kim, Chung-Hui;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.243-251
    • /
    • 2009
  • Present study was conducted to evaluate the anti oxidative activity of the Agrimonia pilosa-Ledeb leaves on non-lipid oxidative damage. The antioxidative activity of methanolic (MeOH) extract of the Agrimonia pilosa-Ledeb leaves on non-lipid oxidation, including liposome oxidation, deoxyribose oxidation, protein oxidation, chelating activity against metal ions, scavenging activity against hydrogen peroxide, scavenging activity against hydroxyl radical and 2'-deoxyguanosine (2'-dG) oxidation were investigated. The MeOH extract of the Agrimonia pilosa-Ledeb leaves exhibited high anti oxidative activity in the liposome model system. Deoxyribose peroxidation was inhibited by the MeOH extract of the Agrimonia pilosa-Ledeb leaves and MeOH extract of the Agrimonia pilosa-Ledeb leaves provided remarkable protection against damage to deoxyribose. Protective effect of MeOH extracts of the Agrimonia pilosa-Ledeb leaves on protein damage was observed at $600{\mu}g$ level (82.05%). The MeOH extracts of the Agrimonia pilosa-Ledeb leaves at $300{\mu}g$ revealed metal binding ability (32.64%) for hydrogen peroxide. Furthermore, the oxidation of 2'-deoxyguanosine (2'-dG) to 8-hydroxy-2-deoxyguanosine (8-OH-2'dG) was inhibited by MeOH extracts of the Agrimonia pilosa-Ledeb leaves and scavenging activity for hydroxyl radical exhibited a remarkable effect. From the results in the present study on biological model systems, we concluded that MeOH extract of the Agrimonia pilosa-Ledeb leaves was effective in the protection of non-lipids against various oxidative model systems.

Expression of a Glutathione Reductase from Brassica rapa subsp. pekinensis Enhanced Cellular Redox Homeostasis by Modulating Antioxidant Proteins in Escherichia coli

  • Kim, Il-Sup;Shin, Sun-Young;Kim, Young-Saeng;Kim, Hyun-Young;Yoon, Ho-Sung
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.479-487
    • /
    • 2009
  • Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semi-quantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to $H_2O_2$, menadione, and heavy metal ($CdCl_2$, $ZnCl_2$ and $AlCl_2$)-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to $H_2O_2$ stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.

Evaluation of DNA Damage by Mercury Chloride (II) and Ionizing Radiation in HeLa Cells (이온화 방사선 및 염화수은(II)에 의한 자궁경부암 세포의 DNA 손상 평가)

  • Woo Hyun-Jung;Kim Ji-Hyang;Antonina Cebulska-Wasilewska;Kim Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.46-52
    • /
    • 2006
  • The mercury is among the most highly bioconcentrated toxic trace metals. Many national and international agencies and organisations have targeted mercury for the possible emission control. The mercury toxicity depends on its chemical form, among which alkylmercury compounds are the most toxic. A human cervix uterus cancer cell line HeLa cells was employed to investigate the effect of the toxic heavy metal mercury (Hg) and ionizing radiation. In the in vitro comet assays for the genotoxicity in the HeLa cells, the group of Hg treatment after irradiation showed higher DNA breakage than the other groups. The tail extent moment and olive tail moment of the control group were $4.88{\pm}1.00\;and\;3.50{\pm}0.52$ while the values of the only Hg treatment group were $26.90{\pm}2.67\;and\;13.16{\pm}1.82$, respectively. The tail extent moment and olive tail moment of the only 0.001, 0.005, 0.01 Hg group were $12.24{\pm}1.82,\;8.20{\pm}2.15,\;20.30{\pm}1.30,\;12.26{\pm}0.52,\;40.65{\pm}2.94\;and \;20.38{\pm}1.49$, respectively. In the case of Hg treatment after irradiation, the tail extent moment and olive tail moment of the 0.001, 0.005, 0.01 Hg group were $56.50{\pm}3.93,\;32.69{\pm}2.48,\;62.03{\pm}5.14,\;31.56{\pm}1.97,\;72.73{\pm}3.70\;and \;39.44{\pm}3.23$, respectively. The results showed that Hg induced DNA single-strand breaks or alkali labile sites as assessed by the Comet assay. It is in good agreement with the reported results. The mercury inhibits the repair of DNA. The bacterial formamidopyrimidine-DNA glycosylase (Epg protein) recognizes and removes some oxidative DNA base modifications. Enzyme inactivation by Hg (II) may therefore be due either to interactions with rysteine residues outside the metal binding domain or to very high-affinity binding of Hg (II) which readily removes Zn (II) from the zinc finger.

Localized Surface Plasmon Resonance (LSPR) Biosensors on Metal Nanoparticles with the Design of Bioreceptors

  • Kim, Min-Gon;Park, Jin-Ho;Byun, Ju-Young;Shin, Yong-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.126-126
    • /
    • 2014
  • Label-free biomolecular assay based localized surface plasmon resonance (LSPR) of noble metal nanoparticles enables simple and rapid detection with the use of simple equipment. Nanosized metal nanoparticles exhibit a strong absorption band when the incident light frequency is resonant with the collective oscillation of the electrons, which is known as the LSPR. Here we demonstrate localized surface plasmon resonance (LSPR) substrates such as plasmonic Au nanodisks fabricated by a nanoimprinting process and gold nanorod-immobilized surfaces and their applications to highly sensitive and/or label-free biosensing. To increase detection sensitivity various bioreceptors weree designed. A single chain variable fragment (scFv) was used as a receptor to bind C-reactive protein (CRP). The results of this effort showed that CRP in human serum could be quantitatively detected lower than 1 ng/ml. Aptamers, which were immobilized on gold nanorods, were used to detect mycotoxins. The specific binding of ochratoxin A (OTA) to the aptamer was monitored by the longitudinal wavelength shift of LSPR peak in the UV-Vis spectra resulting from the changes of local refractive index near the GNR surface induced by accumulation of OTA and G-quadruplex structure formation of the aptamer. According to our results, OTA could be quantitatively detected lower than 1 nM level. Additionally, aptamer-functionalized GNR substrate was quite robust and can be regenerated many times by rinsing at 70 OC to remove bound target. During seven times of washing steps, the developed OTA sensing system could be reusable. Moreover, the proposed biosensor exhibited selectivity over other mycotoxins with an excellent recovery for detection in grinded corn samples, suggesting that the proposed LSPR based aptasensor plays an important role in label-free detection of mycotoxins.

  • PDF

pT7MT, a Metallothionein 2A-Tagged Novel Prokaryotic Fusion Expression Vector

  • Marikar, Faiz M.M.T.;Fang, Lei;Jiang, Shu-Han;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.728-732
    • /
    • 2007
  • In the present article, a novel fusion expression vector for Escherichia coli was developed based on the pTORG plasmid, a derivative of pET32a. This vector, named pT7MT(GenBank Accession No DQ504436), carries a T7 promoter and it drives the downstream gene encoding Metallothionein 2A(MT2A). There are in-framed multiple cloning sites(MCS) downstream of the MT2A gene. A target gene can be cloned into the MCS and fused to the C-terminal of the MT2A gene in a compatible open reading frame(ORF) to achieve fusion expression. The metal-binding capability of MT2A allows the purification of fusion proteins by metal chelating affinity chromatography, known as $Ni^{2+}$-affinity chromatography. Using this expression vector, we successfully got the stable and high-yield expression of MT2A-GST and MT2A-Troponin I fusion proteins. These two proteins were easily purified from the supernatant of cell lysates by one-step $Ni^{2+}$-affinity chromatography. The final yields of MT2A-GST and MT2A-Troponin I were 30mg/l and 28mg/l in LB culture, respectively. Taken together, our data suggest that pT7MT can be applied as a useful expression vector for stable and high-yield production of fusion proteins.

Removal of Chromium (VI) by Escherichia coli Cells Expressing Cytoplasmic or Surface-Displayed ChrB: a Comparative Study

  • Zhou, Xiaofeng;Li, Jianghui;Wang, Weilong;Yang, Fan;Fan, Bingqian;Zhang, Chenlu;Ren, Xiaojun;Liang, Feng;Cheng, Rong;Jiang, Fengying;Zhou, Huaibin;Yang, Juanjuan;Tan, Guoqiang;Lyu, Jianxin;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.996-1004
    • /
    • 2020
  • Various genetically engineered microorganisms have been developed for the removal of heavy metal contaminants. Metal biosorption by whole-cell biosorbents can be enhanced by overproduction of metal-binding proteins/peptides in the cytoplasm or on the cell surface. However, few studies have compared the biosorption capacity of whole cells expressing intracellular or surface-displayed metal-adsorbing proteins. In this study, several constructs were prepared for expressing intracellular and surface-displayed Ochrobactrum tritici 5bvl1 ChrB in Escherichia coli BL21(DE3) cells. E. coli cells expressing surface-displayed ChrB removed more Cr(VI) from aqueous solutions than cells with cytoplasmic ChrB under the same conditions. However, intracellular ChrB was less susceptible to variation in extracellular conditions (pH and ionic strength), and more effectively removed Cr(VI) from industrial wastewater than the surface-displayed ChrB at low pH (<3). An adsorption-desorption experiment demonstrated that compared with intracellular accumulation, cell-surface adsorption is reversible, which allows easy desorption of the adsorbed metal ions and regeneration of the bioadsorbent. In addition, an intrinsic ChrB protein fluorescence assay suggested that pH and salinity may influence the Cr(VI) adsorption capacity of ChrB-expressing E. coli cells by modulating the ChrB protein conformation. Although the characteristics of ChrB may not be universal for all metal-binding proteins, our study provides new insights into different engineering strategies for whole-cell biosorbents for removing heavy metals from industrial effluents.

Isolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium Flammeovirga sp. HQM9

  • Liu, Yan;Tian, Xiaoxu;Peng, Chao;Du, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.235-243
    • /
    • 2019
  • A special eosinophilic agarase exo-type ${\beta}$-agarase gene, AgaDL6, was cloned from a marine agar-degrading bacterium, Flammeovirga sp. HQM9. The gene comprised 1,383-bp nucleotides encoding a putative agarase AgaDL6 of 461 amino acids with a calculated molecular mass of 52.8 kDa. Sequence analysis revealed a ${\beta}$-agarase domain that belongs to the glycoside hydrolase family (GH) 16 and a carbohydrate-binding module (CBM_4_9) unique to agarases. AgaDL6 was heterologously expressed in Escherichia coli BL21 (DE3). Enzyme activity analysis of the purified protein showed that the optimal temperature and pH of AgaDL6 were $50^{\circ}C$ and 3.0, respectively. AgaDL6 showed thermal stability by retaining more than 98% of activity after incubation for 2 h at $50^{\circ}C$, a feature quite different from other agarases. AgaDL6 also exhibited outstanding acid stability, retaining 100% of activity after incubation for 24 h at pH 2.0 to 5.0, a property distinct from other agarases. This is the first agarase characterized to have such high acid stability. In addition, we observed no obvious stimulation or inhibition of AgaDL6 in the presence of various metal ions and denaturants. AgaDL6 is an exo-type ${\beta}$-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. These characteristics make AgaDL6 a potentially valuable enzyme in the cosmetic, food, and pharmaceutical industries.

Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand

  • Do, Bich Hang;Nguyen, Minh Tan;Song, Jung-A;Park, Sangsu;Yoo, Jiwon;Jang, Jaepyeong;Lee, Sunju;So, Seoungjun;Yoon, Yejin;Kim, Inki;Lee, Kyungjin;Jang, Yeon Jin;Choe, Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2156-2164
    • /
    • 2017
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli. In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was $0.4EU/{\mu}g$, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an $EC_{50}$ and Hill coefficient of $0.6{{\pm}}0.03nM$ and $2.41{\pm}0.15$, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

Action Mechanism of LB10522, a New Catechol-Substituted Cephalosporin (카테콜 치환체를 가진 세파로스포린계 항생제 LB10522의 작용기전)

  • Kim, Mu-Yong;Oh, Jeong-In;Paek, Kyoung-Sook;Kim, In-Chull;Kwak, Jin-Hwan
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.102-111
    • /
    • 1996
  • LB10522 is a new parenteral broad spectrum cephalosporin with a catechol moiety at C-7 position of beta-lactam ring. This compound can utilize tonB-dependent iron transp ort system in addition to porin proteins to enter bacterial periplasmic space and access to penicillin-binding proteins (PBPs) which are the lethal targets of ${\beta}$-lactam antibiotics. The chelating activity of LB10522 to metal iron was measured by spectrophotometrically scanning the absorbance from 200 to 900nm. When $FeCl_3$ was added, optical density was increased between 450 and 800nm. LB10522 was more active against gram-negative strains in iron-depleted media than in iron-replete media. This is due to the increased expression of iron transport channels in iron-depleted condition. LB10522 showed a similar activity against E. coli DC2 (permeability mutant) and E. coli DCO (wild type strain) in both iron-depleted and iron-replete media, indicating a minimal permeaility barrier for LB10522 uptake. LB10522 had high affinities to PBP 3 and PBP 1A, 1B of E. coli. By blocking these proteins, LB10522 caused inhibition of cell division and the eventual death of cells. This result was correlated well with the morphological changes in E. coli exposed to LB10522. Although the in vitro MIC of LB10522 against P. aeruginosa 1912E mutant (tonB) was 8-times higher than that of the P. aeruginosa 1912E parent strain, LB10522 showed a similar in vivo protection efficacy against both strains in the mouse systemic infection model. This result suggested that tonB mutant, which requires a high level of iron for normal growth, might have a difficulty in surviving in their host with an iron-limited environment.

  • PDF