• 제목/요약/키워드: Metal-Support Interaction

검색결과 41건 처리시간 0.027초

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

합성가스 생산을 위한 복합개질 반응에서 $Ni/MgO-Al_2O_3$ 촉매의 탄소 침적 저항성 향상에 관한 연구 (Enhancement of coke resistance on Ni/MgO-$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for the syngas production)

  • 구기영;노현석;정운호;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2009
  • Highly active and stable nano-sized Ni catalysts supported on MgO-$Al_2O_3$ calcined from hydrotalcite-like materials have been successfully developed with a strong metal to support interaction (SMSI) to enhance the coke resistance in combined $H_2O$ and $CO_2$ reforming of $CH_4$ (CSCRM) for syngas ($H_2$/CO=2) production. The change of the surface area and NiO crystallite size with varying the pre-calcination temperature of support and Mgo content was investigated in relation to the coke resistance. As increasing the pre-calcination temperature, the surface area decreases and the metal to support interaction becomes weak. As a consequence, the coke deposition was more severe on catalysts pre-calcined at high temperature. It was concluded that highly dispersed Ni metal in the surface of Ni/MgO-$Al_2O_3$ catalyst (MgO=30 wt%) pre-calcined at $800^{\circ}C$ had a strong metal to support interaction (SMSI) resulting in an increase of coke resistance and high activity.

  • PDF

구리를 포함하는 ${\gamma}$-$Al_2O_3$$TiO_2$에서의 금속-담체 상호작용 (Metal-Support Interaction in Cu /${\gamma}$-$Al_2O_3 and Cu / TiO_2$ Systems)

  • 주미경;한종수;조민수;이계수
    • 대한화학회지
    • /
    • 제32권6호
    • /
    • pp.543-548
    • /
    • 1988
  • 1∼5wt%의 구리가 얹혀진 ${\gamma}$-알루미나 또는 티타니아에서 금속-지지체 상호작용을 승온환원과 상자성 공명으로 연구하였다. $500^{\circ}C에서 시료를 산소로 처리했을 때 티타니아계에서는 구리 함량이 증가함에 따라 고온쪽으로 승온환원 피이크가 증가했으나 알루미나 계에서는 저온쪽의 승온 환원 피이크가 커졌다. $300^{\circ}C 처리 경우에는 알루미나계에서는 $300^{\circ}C에서 티타니아계는 120 과 $300^{\circ}C에서 각각 환원피이크를 보여주었다. ${\gamma}$-알루미나에서는 $Cu^{2+}$의 전형적인 상자성 신호가 나타났으나 티타니아에서는 넓고 작은 신호만 관찰되었다. 이들 결과들로부터 금속-지지체 상호작용은 실리카 < 티타니아 < ${\gamma}$-알루미나의 순으로 커지며 산화구리는 지지체에 따라 서로 다른 담지특성을 가짐을 알 수 있었다.

  • PDF

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Enhanced binding between metals and CNT surface mediated by oxygen

  • 박미나;김병현;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.61-61
    • /
    • 2010
  • In the present work, we present the optimized the hybrid structures of carbon nanotubes (CNTs) and metal nanocomposites including Cu, Al, Co and Ni using the first principle calculations based on the density functional theory. Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The application of defective or functionalized CNTs has thus attracted great attention to enhance the interfacial strength of CNT/metal nanocomposites. Herein, we design the various hybrid structures of the single wall CNT/metal complexes and characterize the interaction between single wall CNTs and various metals such as Cu, Al, Co or Ni. First, differences in the binding energies or electronic structures of the CNT/metal complexes with the topological defects, such as the Stone-Wales and vacancy, are compared. Second, the characteristics of functionalized CNTs with various surface functional groups, such as -O, -COOH, -OH interacting with metals are investigated.We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and metal. The binding energy is also greatly increased when it is absorbed on the defects of CNTs. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT-Cu composite[1].

  • PDF

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Comparison of Metal Cleaning Effect on Pt Particles Supported on Carbon and Pt Black Observed by NMR, CV, and TEM

  • Han, Kee-Sung;Han, Oc-Hee
    • 한국자기공명학회논문지
    • /
    • 제6권1호
    • /
    • pp.38-44
    • /
    • 2002
  • 60% Pt on Vulcan XC-72 with similar Pt sizes to fuel cell grade Pt black was investigated by $\^$13/C nuclear magnetic resonance spectroscopy (NMR), cyclic voltammery (CV), transmission electron microscopy (TEM). Experiments were carried out on electrochemically cleaned samples as well as as-received. The TEM and CV results showed that the average particle sizes were changed by cleaning. However, the chemical shift ($\delta$$\_$G/) of $\^$13/C of $\^$13/CO absorbed on Pt surfaces did not show any appreciable variation with particle size change as did in Pt black. These results indicate that a combination of different analytic techniques is essential to understand the properties of the metal particle catalysts and that the presence of carbon black support strongly influences the NMR data, probably through metal-support interaction.

  • PDF

X-선 광전자분광법을 이용한 MgO/Mg 표면에 증착된 Pd의 분석 (X-Ray Photoelectron Spectroscopy Studies of Pd Supported MgO/Mg)

  • 태위승;서현욱;김광대;김영독
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.281-287
    • /
    • 2009
  • 본 연구에서는 고진공 조건에서 열기화 증착 방법으로 산화막으로 덮인 Mg 리본(MgO/Mg) 위에 Pd을 증착하였다. 고진공 속에서 만든 시료의 전자구조를 in-situ X-선 광전자 분광법 (XPS)을 통하여 분석하였고, 분석 후, FE-SEM을 통해 증착량의 증가에 따른 표면구조의 변화를 확인하였다. Pd 증착량이 1 나노미터 (nm) 이하인 경우에는 증착량 증가에 따른 Pd 나노입자 크기의 증가를 확인하였으며, Pd을 1 nm 이상의 두께로 증착시킨 경우에는 Pd 입자들의 뭉침에 의해 얇은 필름이 형성됨을 관찰하였다. Pd과 기판사이의 전하이동에 의하여 산화물/금속 계면의 Pd 원자들은 부분적으로 양전하를 띔을 확인하였다.