• Title/Summary/Keyword: Metal working fluids

Search Result 30, Processing Time 0.025 seconds

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 부패 특성과 Copper Alloy Metal Fiber의 부패 방지 장치에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • Copper alloy metal fiber was incorporated into the conventional water-soluble metal working fluids to increase the antimicrobial activity. Fluid treated by copper alloy metal fiber is shown that bacteria is disappeared whereas that untreated metal fiber is increased bacteria as increasing the life time. When the electrochemical potential of Cu/Zn ion is -268mV, radicals with molecular oxygen are easily made. Especially, hydroperoxide radical shows strong toxicity to the strains, leading to the conformational change of plasma membrane. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

A Study of the Relations between the Bacterial Concentration and the Environmental Factors in the Factories using Water Soluble Metal Working Fluids (수용성 금속가공유 취급사업장에서 세균농도와 환경인자의 관계에 대한 연구)

  • Park, Hae Dong;Park, Hyunhee;Kim, Jung Hyun;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.284-292
    • /
    • 2012
  • Objectives: The objective of this study was to investigate the relations between the bacterial concentration and the environmental factors in the water soluble metal working fluids at factories. Methods: The bacterial concentrations for airborne and fluid samples of 7 factories were quantified during the summer season. And we statistically analysed the relations between the bacterial concentrations and the factors such as temperature, relative humidity, usage quantity, mixing ratio and exchange interval. Results: The geometric mean levels of the airborne bacterial concentrations were 79.1(range : N.D.~686) $CFU/m^{3}$ and 68.1(range: N.D.~919) $CFU/m^{3}$ in the process and outdoor. The airborne bacterial concentrations showed no statistical difference by process, usage quantity, mixing ratio and exchange interval. The airborne bacterial concentrations had negatively weak correlations with air temperature and relative air humidity(p<0.05). The bacterial concentrations and pH showed significantly negative correlations in the fluids(p<0.05). And the airborne bacterial concentrations in factories and those in metal working fluids showed no statistical relationship. Conclusions: In the water soluble metal working fluids using factories, the airborne bacterial concentrations of the process were related to those of the outdoor and environmental factors, rather than the onsite contaminated metal working fluids.

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 Copper Alloy Metal Fiber에 의한 항균 특성에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.233-237
    • /
    • 2007
  • This study is focused on the possibility of copper alloy metal fiber for an antimicrobial activity in the water soluble metal working fluids. Electrochemical potential of Cu/Zn ion is -268mV, and easily makes radicals with molecular oxygen. Especially, hydroperoxide radical shows strong toxicity to the strains. Plasma membrane causes conformational change when hydroperoxide radical binds to plasma membrane. Elution of copper ion from copper alloy metal fiber is detected in metal working fluid. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

The Study on Decomposition against Microbes of Metal-working Fluids (미생물을 이용한 절삭유제의 부패성능 평가에 관한 연구)

  • 홍광민;정근우;김영운;윤유정
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-167
    • /
    • 2000
  • Synthetic water-based metal-cutting fluids are increasingly popular in the metal-working industry because of its environmental friendliness. However, the fluids have the problem to be decomposed by microbes with use. Thus, it is very important to evaluate the stabilities of the fluids against microbes for the excellent fluids. The purpose of this study is to investigate the biodegradability of several lubricating agents used to improve anti-wear property of the fluids. From the study, it was found that there existed some difference on the biodegradability against microbes such as Escherichia coli and Klepsiella pneumoniae depended on the structure of the lubricating agents and pH of the fluids.

  • PDF

Drilling Properties of Water-Based Metal Working Fluid Containing Fatty Acid and Polyethylene Glycol (지방산과 폴리에틸렌글리콜의 혼합에 따른 수용성 절삭유제의 절삭특성)

  • Kim, Yeong-Un;Jeong, Geun-U;Yun, Yu-Jeong;Kim, Se-Hun;Gang, Seok-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2001
  • Synthetic water-based metal-cutting fluids are increasingly popular in the metal-working industry because of its environmental friendliness. The propose of this study is to investigate the synergistic effect of combining polyethylene glycol and common fatty acid in formulating a metal-cutting fluid. The tested metals were aluminum, copper and steel, and the test was performed with a modified drilling machine. From the study, it was found that there existed some synergistic effects on the drilling efficiency of the metals to decrease of cutting time, cutting energy, torque as well as the smoothness of surface depended on the formulation ratio of the two fluids.

  • PDF

Reliability Evaluation Technology of Metal Working Fluids Supply Method (절삭유 공급 방식의 신뢰성 평가 기술)

  • 강재훈;송준엽;이승우;박화영;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.206-208
    • /
    • 2002
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool , carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, Protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the result ins level of exposure) depends on many factors. To reduce the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum Quantity in all over the mechanical machining field including high speed type heavy cult ing process.

  • PDF

The Study on Decomposition of Metal-working Fluids Against Microbes (미생물을 이용한 절삭유제의 부패성능 평가에 관한 연구)

  • Kim, Young-Wun;Hong, Kwang Min;Chung, Kunwo;Park, Chan-Jo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.350-355
    • /
    • 2006
  • Growth curves of microbes were examined to evaluate decomposition of metal-working fluids and decomposition properties of metal-working fluids were experimented using controled microbes such as E. coli and K. pnemoniae. According to the results of growth curve of microbes, the growth period depended on species of microbes, 2 h of E. coli, 3 h of K. pneumoniae, 4 h of P. aeruginosa and 3 h of P. oleovarans after incubation. The colony count of E. coli and K. pneumoniae controled to OD of 0.5 ranged from $4.4{\sim}10.0{\times}10^5CFU/mL$ and $1.8{\sim}9.5{\times}10^7CFU/mL$, respectively. The decomposition of metal-working fluids was excellently progressed in the range of pH 6~8 than below pH 4 and above pH 10. In the case of controled fluids to pH 6~8, the decomposition of the fluid containing ester group was more accelerated than that of the fluid containing ethylene glycol.

Identification of Predominant Bacteria and Fungi in the Industry Treating Soluble Metal Working Fluids (금속가공유 취급 업종에서 우점하는 세균 및 진균의 정성평가)

  • Park, Hae Dong;Park, Dongjin;Park, Hyunhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.416-424
    • /
    • 2014
  • Objectives: The objective of this study is to analyze the predominant microorganisms in the industry treating MWFs(Metal working fluids). Methods: The bacteria and fungi were collected by agar plate impaction and bulk MWFs in storage tank at 54 sites in 9 shops in South Korea. The dominant bacteria and fungi isolated from agar media were identified by fatty acid analysis and morphological analysis, respectively. Results: Totally 111 dominant bacteria were identified in the process, outdoor, and bulk MWFs. The predominant bacterial genus was Micrococcus and Bacillus in the process and outdoor, Pseudomonas in bulk MWF. Among the identified 119 strains of fungi, Cladosporium and Penicillium genus were dominated. The ratios of bacteria designated biosafety level 2 and 1 were 30% and 21%, respectively. Conclusions: This study has investigated the dominant microorganisms in soluble MWF using industry. And it was useful that the qualitative evaluation method along with quantitative analysis for better understanding of the biological factors in the work environment.

절삭설비의 소음환경개선에 관한 연구

  • 이내우;허현철;전성균
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.99-104
    • /
    • 1998
  • 산업현장에서 많이 쓰이는 절삭설비(Metal Working : MW)는 매우 다양하여 일일이 열거하기는 어렵고 주로 자동차생산업종, 농기구제조업종, 각종 기계기구 생산업종, 경금속가공업종 등에서 매우 광범위하게 사용되고 있다. 이들 업종에서 연마, 절단, 천공, 드릴링, 터닝(turning)등을 수행하는 많은 근로자들이 다량의 MWF(Metal Working Fluids) 뿐만 아니라 열악한 소음환경에 노출되고 있다. (중략)

  • PDF

Microbial Assessment in Metal-Working Fluids Handling Industry (금속가공유 취급 작업장의 생물학적 인자 노출평가)

  • Park, Hyunhee;Park, Dongjin;Park, Hae Dong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.300-309
    • /
    • 2014
  • Objectives: The objective of this study is to evaluate microbial exposure hazards in the metal-working fluids(MWF) handling industry. Methods: Air quality parameters(airborne bacteria, fungi, endotoxin and oil mist) and bulk MWF in storage tanks were evaluated at 54 points at nine sites in South Korea. Results: The geometric means(GM) of culturable airborne bacteria, fungi, endotoxin and oil mist concentration were $133CFU/m^3$(n=376, range $7{\sim}6,510CFU/m^3$), $159CFU/m^3$(n=381, range $7{\sim}8,469CFU/m^3$), $8.06EU/m^3$(n=103, range $0.34{\sim}280.4EU/m^3$) and $0.20mg/m^3$(n=104, range $0.01{\sim}2.87mg/m^3$), respectively. The ratio of indoor to outdoor concentration was 2.7 for bacteria, 6.1 for endotoxin, and 4.8 for oil mist. Even though average airborne bacteria concentration did not exceed recommended exposure limits($1,000CFU/m^3$), MWF in the storage tanks was highly contaminated with bacteria(arithmetic mean $2.1{\times}10^6CFU/ml$) and exceeded recommended bacteria limits($10^5CFU/ml$). Conclusions: It is necessary for MWF handling workplaces to conduct periodical biohazard inspection of MWF storage tanks. Additionally, further research may be necessary to establish biological occupational exposure limits.