• Title/Summary/Keyword: Metal surface temperature

Search Result 1,121, Processing Time 0.032 seconds

Comparative Investigation into the Effect of Surface Modification of Metal with Acid-treatments in Public Standards (금속표면의 개질 효과 분석을 위한 산처리 방법의 공인규격 간 비교연구)

  • Kim, Jong-Hak;Joo, Hyeok-Jong;Song, Si-Yong;Choi, Kil Yeong;Byun, Doo-Jin
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • Using the methods which described in ISO 4588, ASTM D2651 and the selected literature, we investigated the best conditions of acid treatment for stainless steel and carbon steel. The acid treatments were conducted with four different acid solutions which were prepared for stainless steel and carbon steel specimen. We observed the contact angle and morphology and roughness of the metal surface and the thickness change at various treatment conditions as treatment temperature and time. Also, we investigated the characteristics of the surface aging according to air exposure after surface treatment. As a result, the optimal temperature of the acid treatment for stainless steel and carbon steel were each obtained at $83^{\circ}C$ and $63^{\circ}C$. Also, it was confirmed that the acid treatments for the metal surface were accompanied with the decrease of thickness and the change of surface morphology due to significant erosion that depend on treatment methods. And also, it was characterized that the aspect of surface aging by air exposure was highly depended on the method of acid treatment.

  • PDF

Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed (금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발)

  • Nam, Jinmoo;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

Development of Porous Metal Mold Material using Vacuum Sintering Method (진공 소결 방식을 이용한 통기성 금형 소재 개발)

  • Kim, Dong-Won;Cho, Kyu-Il;Kim, Hyun-Keun;Kang, Ja-Youn;Rhee, Won-Hyuk;Hwang, Keum-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.5
    • /
    • pp.245-253
    • /
    • 2008
  • The porous metal material is used for injection metal mold with a great deal of gas production because it makes plenty of gas exhausted through pores formed in the metal mold. A canning HIP method was conventionally used for manufacturing of porous metals, but because of difficulty of process control and high cost of production its application was limited. In this experiment, porous metal mold material was produced by an enhanced vacuum sintering method with simply controlled and economical process and porosities/mechanical properties with variation of sintering temperature and duration time during vacuum sintering were studied. As a result, quality goods were obtained at optimized conditions as follows: sintering temperature of $1230^{\circ}C$, duration time of 2 hr and showed superior properties in wear loss and thermal conductivity and the same properties in hardness, TRS (Transverse Rupture Strength), and thermal expansion coefficient in comparison with those under canning HIP.

Surface Chemical Reactions for Metal Organic Semiconductor Films by Alternative Atomic Layer Deposition and Thermal Evaporation

  • Kim, Seong Jun;Min, Pok Ki;Lim, Jong Sun;Kong, Ki-Jeong;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.2-166.2
    • /
    • 2014
  • In this work, we demonstrated a facile and effective method for deposition of metal tetraphenylporphyrin (MTPP) thin film by a combined a thermal evaporation (TE) and atomic layer deposition (ALD). For the deposition of Zn-TPP thin film, Tetraphenylporphyrin (TPP) and diethyl zinc (DEZ) were used as organic and inorganic materials, respectively. Optimum conditions for the deposition of Zn-TPP thin film were established systematically: (1) the exposure time of DEZ as inorganic precursor and (2) the substrate temperature were adjusted, respectively. As a result, we verified that the surface reaction between organic semiconductor (TPP) and metal atom (Zn) was ALD process. In addition, we calculated activation energy by using Arrhenius equation for the substrate temperature versus area change rate of pyrrolic nitrogen. The surface and interface reactions between TPP with Zn were investigated by X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. These results show a facile and well-controllable fabrication technique for the metal-organic thin film for future electronic applications.

  • PDF

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

Magnetonic Resistance Properties of Semiconductor Thin Films by Plasmon Effect on Fabricated Si(100) Substrate (플라즈몬 효과에 의한 실리콘 기판위에 증착된 반도체 박막의 자기저항특성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.105-109
    • /
    • 2019
  • Plasmons have conductive properties using the effect of amplifying magnetic and electric fields around metal particles. The collective movement of free electrons in metal particles induces and produces the generation of plasmon. Because the plasmon is concentrated on the surface of the nanoparticles, it is also called the surface plasmon. The polarizing effect of plasma on the surface is similar to the principle of surface currents occurring in insulators. In this study, it was found the conditions under which plasma is produced in SiOC insulators and studied the electrical properties of SiOC insulators that are improved in conductivity by plasmons. Due to the heat treatment temperature of thin film, plasma formation was shown differently, metal particles were used with normal aluminium, SiOC thin films were treated with heat at 60 degrees, conductivity was improved dramatically, and heat treatment at higher temperatures was found to be less conductivity.

A Study on Condensation Heat Transfer to Some Evaporated Metal Surface (각종증착금속면의 응축열전달에 관한 연구)

  • Jho Shi Gie;Lee Ki Woo;Park Young Jae;Cko Myong Jae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.188-195
    • /
    • 1986
  • Condensation heat transfer can be classified in dropwise condensation and filmwise condensation, and for the industrial purpose, the former is more useful than the latter because of the higher heat transfer rate. But it is difficult to maintain the dropwise condensation continuously since most of the metal surfaces become wetted after exposure to a condensing vapor over an extended period of time. To maintain dropwise condensation continuously , various surface coatings and promoters have been used recently, but these methods must be reconsidered about the durability of condensing surface. Therefore, in this study, evaporating method of various pure metals on the condensing surface has been performed to maintain dropwise condensation. The results have showed that the heat transfer rate of silver evaporating surface is higher than any other metal evaporating in dropwise area. Transition temperature and filmwise condensation curves are uniform regardless of kinds of evaporating metals.

  • PDF

A Study on the Physical Properties and Coating of Metal Surface Using Traditional Lacquer Technique (전통 옻칠 기법을 이용한 금속표면 코팅 및 물성 연구)

  • Cho, Sung Mo;Oh, Han Seo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.302-311
    • /
    • 2021
  • This study uses traditional lacquer techniques to coat the metal surface and evaluates its physical properties to check the applicability of the lacquer coating. For this purpose, a total of six specimens were produced by setting the variation conditions for the number of times (1, 2, 3) and the heating temperature (120℃, 150℃) using SS275 metal(60*60 mm) and 'Wonju lacquer'. For analysis, chromaticity measurements, contact angle/surface energy measurements, Chemical Resistance, and cross-cut tests were used. The analysis showed that the corrosivity was improved and the adhesion of lacquer to the metal surface was excellent. There was no significant change in contact angle/surface energy. Also, there was no significant difference in color. Through this study, it was confirmed that lacquer on metal surfaces improves waterproofing and has a anticorrosion effect. We could also check the proper number of lacquer and heating temperature. Additional physical characteristics such as hardness and wear rate should be studied. It is also necessary to study how lacquer can be painted with a certain thickness.

Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface (레이돔 표면에 금속 나노코팅을 적용한 적외선 저피탐 성능특성 연구)

  • Lee, Yongwoo;Chang, Injoong;Nam, Juyeong;Bae, Hyung Mo;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.

A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application (선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향)

  • Ryu Hyung-Ju;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.