• Title/Summary/Keyword: Metal speciation

Search Result 66, Processing Time 0.023 seconds

Review of Chemical Speciation of Dissolved Zinc in Seawater (해수 중 용존 아연의 화학적 존재 형태 연구 동향)

  • KIM, TAEJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.3
    • /
    • pp.67-80
    • /
    • 2020
  • Zinc (Zn) is known as an essential micronutrient for phytoplankton in the ocean. In surface waters, most of total dissolved Zn presents as organic complexes, and organic complexation dominates the speciation of Zn in seawater. Organic complexation reduces the bioavailable fraction of Zn, the free metal ion (Zn2+), which present less than 5% in surface waters. In this paper, a brief introduction on chemical speciation of dissolved Zn in seawater and analytical method for chemical speciation measurement is provided. Some representative studies were also introduced to describe the importance of chemical speciation of Zn (or other trace metals) on bioavailability and biogeochemistry in the ocean.

Geochemical speciation of dissolved heavy metals in acid mine drainage: effects of pH and total concentration

  • Jung, Hun-Bok;Yun, Seong-Taek;Kwon, Jang-Soon;So, Chil-Sup;Lee, Pyeong-Koo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.404-408
    • /
    • 2003
  • In this study, we examined the influences of pH and total concentration on the speciation of heavy metals (Cd, Cu, Zn) in acid mine drainage. Their labile concentrations were analyzed by Anodic Stripping Voltammetry (ASV) at both natural pH and adjusted pHs (from 2 to 8). We obtained regression equations for predicting labile concentrations as a function of the water pH and contamination level (total dissolved metal concentration). Our data show that labile Cu depends on both the total concentration and pH, while labile Cd and Zn concentrations are controlled mainly by their total concentration rather than pH. Therefore, the pH variation of AMD may significantly change the toxicity and bioavailability especially of Cu, owing to its speciation change.

  • PDF

Chemical Speciation of Trace Metals in Natural Water by Ultrafiltration/Size Exclusion Chromatography/UV Absorption/ICP-MS

  • Haraguchi, Hiroki;Itoh, Akihide;Kimata, Chisen
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.405-410
    • /
    • 1995
  • A study on elemental speciation of trace metals in lake water (Lake Biwa in Japan) has been carried out by a size exclusion chromatography (SEC) / inductively coupled plasma mass spectrometry (ICP-MS) system. Before analysis, the water sample was preconcentrated with a ultrafiltration technique, where the large molecules with molecular weight larger than 10,000 were concentrated. Then the preconcentrated water samples (500-1000 fold) were analyzed by a SEC/ICP-MS system. Most trace metals were found at the UV absorption peaks corresponding to the molecular weights of ca. 300,000 and 10,000-50,000, where trace metals were on-line detected by ICP-MS. The results suggest that many of trace metals exist as the large organic molecules-metal complexes in natural water.

  • PDF

Organic amendment-driven removal and speciation of metals using wormwood in two contrasting soils near an abandoned copper mine

  • Ro, Hee-Myong;Choi, Hyo-Jung;Yun, Seok-In;Park, Ji-Suk
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.775-786
    • /
    • 2018
  • To test the hypothesis that humic acid (HA), anaerobically digested pig slurry filtrate (APS), and their combination would differently affect the chemical speciation and extractability of metals (cadmium, copper, and zinc) and their uptake by plants, we conducted a pot experiment using wormwood in two texturally contrasting soils (sandy loam and clay loam) collected from a field near an abandoned Cu mine. Four treatments were laid out: HA at $ 23.5g\;kg^{-1}$ (HA), APS at $330mL\;kg^{-1}$ (APS), HA at $ 23.5g\;kg^{-1}$ and APS at $330mL\;kg^{-1}$ (HA + APS), and a control. Each treatment affected the chemical speciation and mobility of the metals, and thereby resulting in variable patterns of plant biomass yield and metal uptake. The APS supported plant growth by increasing nutrient availability. HA supported or hindered plant growth by impacting the soil's water and nutrient retention capacity and aeration, in a soil texture-dependent manner, while consistently enhancing the immobilization of heavy metals. Temporal increases in whole-plant dry matter yield and metal accumulation suggested that the plants were capable of metal hyperaccumulation. The results were discussed in terms of the mobility of metals and plant growth and corroborated by the $^{15}N$ recovery of soil- and plant-N pools under H and HS treatments. Therefore, for effective phytoremediation of polluted soils, an appropriate combination of plant growth promoters (APS) and chelating agents (HA) should be predetermined at the site where chemical stabilization of pollutants is desired.

Analysis and Characteristics of Heavy Metals in Mines Waste Water (광산폐수 속의 중금속의 분석과 특성)

  • Lee, Kyung-Ho
    • Journal of the Speleological Society of Korea
    • /
    • no.92
    • /
    • pp.9-18
    • /
    • 2009
  • A number of closed metal mines act as point sources of contamination on nearby streams, soils and plants in our country. The contamination of twelve decomposed samples had earned from nine closed metal mines had been evaluated by TEA-3000. The contents of heavy metal with ion fraction exchange and carbonate fraction forms had been showed that the speciation of heavy metals represented with easy solubility, mobility and bioavailable of plants, and in case of sulfide compounds and organic residuals forms are related with the speciation of metals which may be stable forms because of strong bindable capacity. Also heavy metals elements in mosts of mines got with relative stable within crystal lattice, but results of trace element analyser showed that, in the most of tailings from mine areas, large portions of concentration of heavy metals were explained as stable from, sulfides/ organics and residual. In tailing from Imchun mines, the concentrations extracted by water were relatively high as compared with other mine areas whose total concentrations were very high because of large quantities of exchangeable ions and carbonates and low soil pH. Danger Index (D.I.) suggested in this study was based on the cumulative concentrations of step 1 and 2 from the result of trace element analyser. When the soil pH was considered, this index became better indicator to determine the priority for the remediation of mine area.

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Chemical Speciation of Trace Metals in Airborne Particles at An Industrialized Site (공업지역 대기 중 입자에 함유된 미량금속의 화학종별 분석)

  • Jeong Gi-Ho;Lee Ji-Young;Moon Ji-Yong;Lee Sung-In
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.503-511
    • /
    • 2006
  • Airborne particles collected from a heavily industrialized site were analyzed by chemical speciation of seven trace metals: Pb, Cd, Cr, Cu, Ni, Zn, and As. The average concentrations were as follows: $Zn,\;502.0{\pm}230.7;\;Pb,\;176.5{\pm}310.9;\;Cu,\;111.9{\pm}82.7;\;As,\;38.0{\pm}31.0;\;Cr,\;21.5{\pm}24.4;\;Cd,\;20.8{\pm}17.4;\;and\;Ni,\;11.4{\pm}8.4\;ng/m^3$. The median enrichment factor (EF) values of Cd (7,280), As (1,030), Cu (215), Zn (214), and Pb (143), with respect to iron, were much larger than 100. We observed that Cd was found in the soluble and exchange- able form (56.9%), and that Pb and Cr were found in carbonates, oxides and the reducible form (69.8% and 61.1%, respectively). These two forms, which are the most easily absorbed into human body tissue, predominated in most of the trace metals investigated in this study.

Effect of Rotary Drum on the Speciation of Heavy Metals during Water Hyacinth Composting

  • Singh, Jiwan;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • Studies were carried out on the speciation of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during rotary drum composting of water hyacinth (Eichhornia crassipes) for a period of 20 days. Five different proportions of cattle manure, water hyacinth and sawdust were prepared for composting. This study concluded that, rotary drum was very efficient for the degradation of organic matter as well as for the reduction of mobility and bioavailability of heavy metals during water hyacinth composting. The results from the sequential extraction procedure of heavy metals shows that rotary drum composting changed the distribution of five fractions of Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr. The highest reduction in the bioavailability factors of Pb and Cd was observed during the process. The total concentration of Cu, Cr, and Cd was very low compared to the other metals (Zn, Mn, Fe, Ni, and Pb); however, the percentage of exchangeable and carbonate fractions of these metals was similar to other metals. These results confirmed that the bioavailability of metals does not depend on the total concentration of metals. From this study, it can be concluded that the addition of an appropriate proportion of cattle manure significantly reduced the mobile and easily available fractions (exchangeable and carbonate fractions) during water hyacinth composting in rotary drum.

Speciation of Some Heavy Metals in Surface and Core Sediments of Kyeonggi Bay, West Coast of Korea

  • Kim, Bum-Soo;Koh, Chul-Hwan;Lee, Chang-Bok
    • Journal of the korean society of oceanography
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2001
  • Chemical speciation of five heavy metals (Cr, Cu, Ni, Pb, Zn) has been analyzed from 37 surface and 2 core sediments of Kyeonggi Bay, using the modified sequential extraction method based on Tessier et at. (1979). The results show that heavy metals in the Kyeonggi Bay surface sediments are associated dominantly with the crystal lattice fraction. But in the polluted sediments of the Incheon North Harbor, the importance of the labile fractions increased while that of the lattice fraction decreased. In particular, the adsorbed and the easily reducible fractions showed a noticeable increase. In the core samples emerged a speciation pattern which differed significantly from that of the surface sediments. A sharp increase in the percentage of the reducible and organic/sulfide fractions and a decrease in the lattice fraction were observed. Throughout the vertical column, however, the metal contents in the lattice fraction showed stability while those of the labile fractions showed an upward increase. The strong association of heavy metals with the organic/sulfide fraction could be attributed in part to the sulfate reduction prevailing in the polluted harbor sediments.

  • PDF