• Title/Summary/Keyword: Metal separation

Search Result 543, Processing Time 0.024 seconds

A Study on the Estimation of Separation Forces of a Power Steering Hose Assembly (동력조향장치 호스 조립품의 이탈력 추정에 관한 연구)

  • Kim Hyungje;Kim Byungtak;Yoon Moonchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.190-196
    • /
    • 2005
  • The power steering hose assembly is usually manufactured through the swaging process, which is conducted to connect a hose with metal fittings. In this process the hose is inserted into metal components, the sleeve and the nipple, and compressed in the radial direction by the jaws to clamp the hose with metal components. In case that the clamping force is small, the oil in the hose can leak locally under the severe operating conditions. To confirm the clamping force requirements, the measurement of separation force in longitudinal direction of the hose is usually performed. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the separation fDrce. The results interpretations are ffcused on the inner rubber component, and also a formula is proposed to estimate the separation farces with respect to friction coefficients.

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

PREDICTION OF A MUTUAL SEPARATION OF ACTINIDE AND RARE EARTH GROUPS IN A MULTISTAGE REDUCTIVE EXTRACTION SYSTEM

  • Yoo, Jae-Hyung;Lee, Han-Soo;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.663-672
    • /
    • 2007
  • The mutual separation behavior of actinides and rare earths in a countercurrent multistage reductive extraction system was predicted by computer calculation. The distribution information for actinides and rare earths in the reductive extraction systems of LiCl-KCl/Cd and LiCl-KCl/Bi was collected from literature and then it was used for the calculation of a multistage extraction. The results of the concentration profiles throughout the extraction cascade, recovery yields of various metal solutes, and separation factors between the actinides and rare earths were calculated. The effects of the major process parameters, such as reducing agent content in the metal phase, number of stages, and salt/metal flow ratio, etc., on the extraction behavior were also examined.

Examination of Dust Trapping Mechanism in a Metal Fiber Filter-bed (금속 섬유 필터층을 이용한 미세 분진 집진 성능 관찰)

  • 이경미;조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2004
  • A metal fiber bed has seldom been applied to the practical filtration process despite its excellent mechanical and chemical stability. The filter-bed used in this work was highly porous with open structure, of which apparent porosity was 80 ∼ 90%. Although pressure loss across the filter-bed was very low, separation efficiency was found to be quite high. This paper focuses on the basic filtration mechanisms of a metal filter-bed and a thin ceramic filter from fly ash for reference. The experimental parameters were face velocity, dust loading and porosity of filter-bed. Pressure drop increased with increasing face velocity and dust feeding load for both filters. It also showed that dust particles deposited in the deep flow path, finally resulting in clogging the pore channels. It thereby indicates that the dominating mechanism of the metal filter-bed would be depth filtration. Meanwhile, the thin fly ash composite filters trapped the aerated dust mainly on the surface of the filter medium, so that the instantaneously formed dust layer might cause a steep increase of pressure drop across the filtration system.

Adsorption and Separation of U (VI), Co (II), and Dy (III) Metal Ions on Crown Synthetic Resin

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Synthetic resins were combined 1-aza-12-crown-4 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 8%, and 16% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on metal ion adsorption for resin adsorbent, the metal ions showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in ethanol solvent was the order of uranium ($UO_2{^{2+}}$) > cobalt ($Co^{2+}$) > dysprosium ($Dy^{3+}$) ion, adsorbability of the metal ion was the crosslink in order of 1%, 2%, 8%, and 16% and it was increased with the lower dielectric constant. In addition, theses metal ions could be separated in the column with 1% crosslink resin by using nitric acid (pH 2.0) as an eluent.

Preparation of Titanium Microfiltration Membrane by Field-flow Fractionation Deposition

  • Wang, QiangBing;Tang, HuiPing;Zhang, QianCheng;Qiu, QunFeng;Wang, JianYong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.312-313
    • /
    • 2006
  • The primary aim pursued by the preparation of separation membrane is the preparation of the membrane thin as well as with no defect. The field-flow fractionation deposition is a new molding technology which can overcome the traditional disadvantages such as multi-preparation to the preparation of great area of separation membrane with no defect. Therefor the mainly ingredients which influence the appearance and performance of titanium membrane layer are investigated by scanning electricity mirror (SEM) as well as porous material testing instrument: powder performance prepared and confected; selection of supporting body; sintering system such as temperature and time. It is shown that the membrane thickness can be controlled at $50{\mu}m$ or so; the filtration precision mainly rests with powder performance and selection of supporting body and little sintering system

  • PDF

A Study on the Preparation of Metal-Ion Separation Membrane with Hydrophilic Polyphosphazenes (친수성 포스파젠 고분자를 이용한 금속 이온 분리막 제조에 관한 연구)

  • Kwon, Suk-Ky;Lee, Byung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.445-449
    • /
    • 1999
  • Hydrophilic polyphosphazenes were synthesized from hydrophobic polyphosphazenes by adding methoxyethylenoxy side chains and cast by dip-coating method into membranes supported on porous polypropylene mesh filter sheet for metal separation testing. A solution of $Cr^{3+},\;Co^{2+},\;Mn^{2+}$ nitrates was used in diffusion experiments which were conducted from $25^{\circ}C$ to $60^{\circ}C$. lt was found that the ion transport properties were increased as the repeating number of ethylenoxy side chain increased. Membrane from trifluoroethoxy methoxyethoxyethoxyethoxy co-substituted polyphosphazenes was found to separate $Cr^{3+}$ ion from $Mn^{2-}$ and $Co^{2+}$ ions with separation factor of 4.5 at $60^{\circ}C$.

  • PDF

Analysis Method of Volatile Sulfur Compounds Utilizing Separation Column and Metal Oxide Semiconductor Gas Sensor

  • Han-Soo Kim;Inho Kim;Eun Duck Park;Sang-Do Han
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.125-133
    • /
    • 2024
  • Gas chromatography (GC) separation technology and metal oxide semiconductor (MOS) gas sensors have been integrated for the effective analysis of volatile sulfur compounds (VSCs) such as H2S, CH3SH, (CH3)2S, and (CH3)2S2. The separation and detection characteristics of the GC/MOS system using diluted standard gases were investigated for the qualitative and quantitative analysis of VSCs. The typical concentrations of the standard gases were 0.1, 0.5, 1.0, 5.0, and 10.0 ppm. The GC/MOS system successfully separated H2S, CH3SH, (CH3)2S, and (CH3)2S2 using a celite-filled column. The reproducibility of the retention time measurements was at a 3% relative standard deviation level, and the correlation coefficient (R2) for the VSC concentration was greater than 0.99. In addition, the chromatograms of single and mixed gases were almost identical.

Magnetic Separation of FCC Equilibrium Catalyst by HGMS

  • Xiang, Fazhu;He, Pingbo;Chen, Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.770-775
    • /
    • 2001
  • Effects of magnetic field and carrier gas velocity on the magnetic separation of FCC catalyst by a high gradient magnetic separator were studied. The activities of the equilibrium catalyst, the magnetic particles and the nonmagnetic particles were evaluated in a fixed bed microreactor The results showed that heavy metal contaminated catalyst can be selectively separated by means of high gradient magnetic separation at magnetic field 0.5T and carrier gas velocity 0.3m.s$^{-1}$ , and lightly metal contaminated catalyst retained high catalytic activity.

  • PDF

Concentrating Effect of Heavy Metals from Heavy Metal Contaminated Soil by Magnetic Separation (중금속오염 토양의 자기분리에 의한 오염농축효과)

  • Kim, Jee-Eun;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • A magnetic separation study was conducted for a soil sampled from a landfill site where steel slag had been dumped for a long time. Heavy metal concentrating effect was evaluated by analyzing heavy metal content of magnetically separated soil and passed through soil. The effect was compared between soil after soil-washing process and original landfill soil and the effect was also tested between wet condition-magnetic separation and dry condition-magnetic separation. Separated ratio was relatively higher in non-soil washed sample. The water content has no significant effect on the separation rate. The concentrating effect of Fe, Pb, Cu, and Cd were 3.2, 2.1, 12.1, 2.5, 1.5 and 17.4, 7.0, 15.7, 9.6, 7.0 respectively for non-soil washed sample and soil washed sample. We can expect a bigger volume reduction effect from soil-washed samples. The volume reduction effect was obtained from the separation in dry condition. However, when the separation ratio is too high the volume reduction effect decreases. The magnetic separation leads to a volume reduction and concentration of heavy metals into a portion of soil in case of paramagnetic particles contained soil.