• Title/Summary/Keyword: Metal printing

Search Result 338, Processing Time 0.028 seconds

Development of Innovative Light Water Reactor Nuclear Fuel Using 3D Printing Technology (3 차원 프린팅 기술을 이용한 신개념 경수로 핵연료 기술 개발에 관한 연구)

  • Kim, Hyo Chan;Kim, Hyun Gil;Yang, Yong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2016
  • To enhance the safety of nuclear reactors after the Fukushima accident, researchers are developing various types of accident tolerant fuel (ATF) to increase the coping time and reduce the generation of hydrogen by oxidation. Coated cladding, an ATF concept, can be a promising technology in view of its commercialization. We applied 3D printing technology to the fabrication of coated cladding as well as of coated pellets. Direct metal tooling (DMT) in 3D printing technologies can create a coated layer on the tubular cladding surface, which maintains stability during corrosion, creep, and wear in the reactor. A 3D laser coating apparatus was built, and parameter studies were carried out. To coat pellets with erbium using this apparatus, we undertook preliminary experiments involving metal pellets. The adhesion test showed that the coated layer can be maintained at near fracture strength.

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

An Experimental Reproduction Study on Characteristics of Woodblock Printing on Traditional Korean Paper (Hanji) (목판인쇄 재현실험을 통한 한지상의 인출특성에 관한 연구)

  • Yoo, Woo Sik;Kim, Jung Gon;Ahn, Eun-Ju
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.590-605
    • /
    • 2021
  • The history of printing technology in Korea is studied by investigating existing ancient documents and records and comparing accumulated data and knowledge. Cultural property research requires non-destructive testing and observation with the naked eye or aided by a microscope. Researchers' experience and knowledge are required even though they cannot guarantee the outcome. For ancient documents and records that are presumed to consist of woodblock printing, wood type printing, metal type printing, or their combinations, each researcher draws various opinions and conclusions. This often causes confusion and divides the opinions of ordinary citizens and field specialists. Among them, the criteria for judging ancient documents or books printed using woodblock and metal movable material are ambiguous. Academic research on the development history of printing technology in ancient Korea has been stagnant, and conflicts among researchers have also erupted. Involvement of national investigative agencies not specialized in cultural properties has exacerbated the situation. In this study, we investigated printing characteristics that are likely to serve as more objective judgment criteria by quantitatively analyzing the experiments of retrieving several sheets of Korean paper (Hanji) using a replicated Hunminjeongeum (訓民正音) woodblock and quantitatively analyzing the images of the printed papers. In addition, the validity and questions for the typical phenomena presented as a method for distinguishing between woodblock and metal print are reviewed. We investigated the possibility of developing new objective judgement criteria through quantitative analysis using image analysis and investigating the printing characteristics of Korean paper through a reproduction experiment of woodblock printing.

Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells (고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구)

  • Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

Composition Analysis and Thermodynamic Care for Replication of Ancient Metallic Type (고대 금속활자의 복제를 위한 성분분석과 열역학적 주의 점)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • 'Jikjisimcheyocheal (Jikji afterwards)' is known as a first book printed by the metal type in the world. The metal type used for printing this book has not been found yet. To help for replicating the original metal type, it is required to investigate the composition analysis of the copied metal type. In this study, the composition analysis and thermodynamic care for replicating of ancient metal type was performed on the basis of an analytical reports concerned with the ancient metal type which made after Jikji printing. Metal types were made by remelting and casting of the mother alloy which came from a cast of a mixed metals in accordance with the composition revealed in the literatures. Change of composition during remelting of mother alloy and casting of metal was detected by the EDS analysis. The reasons for variation in composition were discussed by metallurgical and thermodynamic point of view, and a mixing ratio of metals to get the original composition of ancient metal type is suggested. Some attention should be paid on mixing, melting and casting of metals to get an objected composition for copy of ancient metal type.

A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials (사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구)

  • Shin, Sung-Hyun;Jeong, Eui-Chul;Kim, Mi-Ae;Chae, Bo-Hye;Son, Jung-Eon;Kim, Sang-Yoon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.

An Experimental Study on the Printing Characteristics of Traditional Korean Paper (Hanji) Using a Replicated Woodblock of Wanpanbon Edition Shimcheongjeon (완판본(完板本) 심청전 복각 목판을 이용한 한지상의 인출특성에 관한 실험적 연구)

  • Yoo, Woo Sik;Kim, Jung Gon;Ahn, Eun-Ju
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.289-301
    • /
    • 2021
  • When investigating old, printed documents, determining whether a work is printed on a woodblock or using a movable metal type is crucial. It is because the history of printing in Korea and across the world relies on determining the relevant printing invention used and the time of use of the movable metal type. Deciphering details from woodblock and metal prints requires various kinds of information regarding the imprint and the work's printing background, such as information on the characters in the printed document, the outline of the pages, the type of ink used, the production period of the ink, and the production period of the Korean paper. Analyzing such information can generally reveal the production period and the methods used on the old document. However, as such information is not documented systematically, relying on the researcher's judgment based on their experience and perception becomes inevitable. This study conducted an experimental investigation of the printing characteristics of woodblock prints using a replicated woodblock of the Wanpanbon edition of the Shimcheongjeon. Subsequently, the various phenomena and characteristics appearing on the woodblock prints were documented for future reference to determine the printing method of old documents. Finally, woodblock novels without an imprint may be used as a reference to estimate the printing dates by determining the degree of wear on the woodblock.

Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method (압출 적층 방식의 알루미늄 용융기의 설계 및 해석)

  • Lee, Hyun-Seok;Na, Yeong-Min;Kang, Tae-Hun;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.