• Title/Summary/Keyword: Metal powders

Search Result 584, Processing Time 0.023 seconds

The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process (분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구)

  • 김춘근
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

Fabrication of Nanocomposite Powders by Sonochemical Method

  • Hayashi, Yamato;Sekino, Tohru;Niihara, Koichi
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.207-209
    • /
    • 2001
  • Nano particles have recently been a major research interest, motivated by their unusual physical and chemical properties. Such particles can be synthesized using physical and chemical methods. The physical methods need expensive installation like vacuum induction furnace, whereas in chemical methods the process in generally very simple and low cost. In this study, simple and new fabrication process by using ultrasound was investigated to prepare the nano-sized metal particles on various powders at room temperature.

  • PDF

A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding (용사법과 레이저 용접을 이용한 복합소재 미세필터 연구)

  • Song, In-Gyu;Choi, Hae-Woon;Kim, Joo-Han;Yun, Bong-Han;Park, Jung-Eon
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF

Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering (방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료)

  • Kwon, Hansang
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Consolidation of Powders by magnetic pulsed compaction (자기펄스 가압 성형장치를 이용한 분말성형)

  • Kim, Jun-Ho;Kim, Hyo-Seob;Koo, Jar-Hyung;Lee, Jeong-Koo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.390-393
    • /
    • 2008
  • In this research, we introduce a new process for the consolidation of different types of powders such as metal and ceramic powders by using a magnetic pulsed compaction (MPC). The successful consolidation of many kinds of powers including nanopowder by MPC has been presented. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructure of the MPCed materials. It was found that effective properties of high strength and full density maintaining nanoscal microstructure were achieved. finally, optimization of the compaction parameters and sintering conditions could lead to the good consolidation of powders (metal, ceramic, nano-powder) with higher density, and even further enhanced mechanical properties.

  • PDF

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Metal Injection Molding of Nanostructured W-Cu Composite Powders Prepared by Mechanical Alloying (기계적 합금방법으로 제조한 극초미세 조직의 W-Cu 복합분말의 금속사출성형 연구)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.145-153
    • /
    • 1998
  • W-Cu alloy is attractive to thermal managing materials in microelectronic devices because of its good thermal properties. The metal injection molding (MIM) of W-Cu systems can satisfy the need for mass production of the complex shaped W-Cu parts in semiconductor devices. In this study, the application of MIM process of the mechanically alloyed (MA) W-Cu composite powders, which had higher sinterability were investigated. The MA W-Cu powders and reduction treated (RT) powders were injected by using of the multicomponent binder system. The multi-stage debinding cycles were adopted in $N_2$ and $H_2$ atmosphere. The isostatic repressing treatment was carried out in order to improve the relative density of brown parts. The brown part of RT W-Cu composite powder sintered at 110$0^{\circ}C$ had shown the higher sinterability compared to that of MA powder. The relative sintered density of all specimens increased to 96% by sintering at 120$0^{\circ}C$ for 1 hour. The relationship between green density and the sintering behavior of MA W-Cu composite powder was analyzed and discussed on the basis of the nanostructured characteristics of the MA W-Cu composite powder.

  • PDF

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Effect of Metal Powders on the Conductivity of Conductive Inks (금속입자가 전도성 잉크의 전도도에 미치는 영향)

  • Kwon, Doo-Hyo;Jeong, Tae-Eui;Kim, Nam-Soo;Han, Kenneth-N.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 2008
  • In this investigation, conductivity of conductive inks was measured. A particular attention has been given to the effect of metal powders with various conductivity on the overall conductivity of the bulk ink. The conductivity of various solutions simulating conductive inks consisting of copper and silver was measured and the results have been discussed in relation to various applications of conductive inks in practice. A conductivity model simulating systems consisting of various materials has been introduced and the results were discussed. Materials of good conductivity are adversely affected by mixing with materials of poor conductivity simply through serial connection. However, parallel connection has rather little effect on the overall conductivity. The practical implication of various mixtures of materials on conductive inks has been discussed.