• 제목/요약/키워드: Metal powder injection molding

검색결과 77건 처리시간 0.026초

고정밀 신관 부품의 MIM 공정에 관한 연구 (A Research on the MIM Process of High-Precision Fuze Parts)

  • 서정화;강경훈
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.231-240
    • /
    • 2012
  • During the past two decades, Metal Injection Molding(MIM) has become a very competitive technology to fabricate small, precise and complex-shaped parts in large quantities. In this research, the applicability of MIM technology in the mass-production of the high precision fuze parts to save manufacturing cost was investigated. The water-atomized 17-4PH stainless steel powder, one of the best corrosion-resistant high strength materials, was injection-molded into real-shape fuze part and flat tensile specimens. The injection-molded parts were thermally debound in hydrogen gas flow without solvent extraction. Sintering of the debound parts was carried out in vacuum at temperatures ranging from $1150^{\circ}C$ to $1370^{\circ}C$. The sintering behavior, mechanical properties, dimensional precision, corrosion resistance of the MIMed 17-4PH stainless parts were investigated. It was found that almost all the properties of the MIMed parts were comparable to those of the mechanically machined parts. Also, actual military field tests using both MIMed and mechanically machined fuze parts were performed as well and were found to be very successful.

Advanced PM Processes for Medical Technologies

  • Petzoldt, Frank;Friederici, Vera;Imgrund, Philipp;Aumund-Kopp, Claus
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Medical technologies are gaining in importance because of scientific and technical progress in medicine and the increasing average lifetime of people. This has opened up a huge market for medical devices, where complex-shaped metallic parts made from biocompatible materials are in great demand. Today many of these components are already being manufactured by powder metallurgy technologies. This includes mass production of standard products and also customized components. In this paper some aspects related to metal injection molding of Ti and its alloys as well as modifications of microstructure and surface finish were discussed. The process chain of additive manufacturing (AM) was described and the current state of the art of AM processes like Selective Laser Melting and electron beam melting for medical applications was presented.

Thermal Debinding Behavior of PIM Components Produced with Different Powder Sizes and Shapes

  • Shu, Guo-Jiun;Hwang, Kuen-Shyang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.219-220
    • /
    • 2006
  • To understand the effect of powder characteristics on the thermal debinding behavior, PIM parts produced with powders with different particle sizes and particle shapes were examined to determine their weight losses during thermal debinding. The results show that the average diameter of the pore channel in the compact increased when the temperature increased and when coarse powders were used. However, the weight loss rates did not increase proportionally with the pore size. This suggests that the different powders that are frequently used in PIM parts do not affect the thermal debinding rate significantly. This is because the pore size is much larger than the mean free path of the decomposed gas molecules. Thus, the diffusion rates of the gases are not rate-controlling in thermal debinding. The controlling mechanism of the thermal debinding rate is the decomposition of the backbone binder in the PIM parts.

  • PDF

PIM기술을 이용한 마이크로 부품 성형기술 (Manufacturing technology of micro parts by powder injection molding)

  • 이원식;고세현;장진만;김일호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF