• Title/Summary/Keyword: Metal oxide coating

Search Result 160, Processing Time 0.03 seconds

A Study on the Optimization of Active Material and Preparation of Granular Adsorbent of Metal Oxide-based Adsorbent for Adsorption of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착을 위한 금속산화물 기반 흡착제의 활성물질 최적화 및 입상형 흡착제 제조에 대한 연구)

  • Choi, Sung Yeol;Han, Dong Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.460-465
    • /
    • 2019
  • In this study, the optimization of active materials and the preparation of particulate adsorbents for the application of metal oxide-based adsorbents for the treatment of $H_2S$, an air pollutant and odorant, occurred in various industrial facilities were investigated. The adsorbents were prepared by using $TiO_2$, which has a high physicochemical stability and relatively high specific surface area among metal oxides and also by different kinds and contents of active materials. The correlation between the physicochemical property and adsorption performance of the adsorbents confirmed that the adsorbent containing KI, which is a typical alkali metal among the active metals, showed the highest adsorption performance. The relationship between the contents and the adsorption performance was non-proportional, but a volcano plot. From XRD, SEM and BET analyses, it was confirmed that the active material was exposed to the surface above a certain amount and also the adsorption performance was the best when the specific surface area and pore volume were $40{\sim}100m^2/g$ and $0.1{\sim}0.3cm^3/g$, respectively. For practical application, the adsorbent was granulated or coated on a ceramic support. It was also confirmed that the adsorbent showed high adsorption performance when the adsorbent was coated on the ceramic rather than that of the granulated support.

Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings (강 구조물에 대한 폴리아닐린 함유도료의 방청특성)

  • Song, Min-Kyung;Kong, Seung-Dae;Oh, Eun-Ha;Yoon, Hun-Cheol;Kim, Yoon-Shin;Im, Ho-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method (전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구)

  • Lee, H.M.;Park, J.H.;Hong, S.M.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.

The Effect of Pd Coating on Electron Emission from Silicon Field Emitter Arrays (Pd 코팅이 실리콘 전계 방출 어레이의 전자 방출에 미치는 영향)

  • Lee, Jong-Ram;O, Sang-Pyo;Han, Sang-Yun;Gang, Seung-Ryeol;Lee, Jin-Ho;Jo, Gyeong-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.295-300
    • /
    • 2000
  • Uniform silicon tip arrays were fabricated using the reactive ion etching followed by the reoxidation sharpening, and the effect of Pd-coated layer on electron emission characteristics was studied. The electron emission from Si field emitter arrays(FEAs) was a little, but improved by removing surface oxide on the FEA, but pronounced drastically by coating a $100-{\AA}-thick$ Pd metal layer. The turn-on voltage in the Pd-coated Si FEAs was reduced by 30 V in comparison with that in uncoated ones. This results from the increase of surface roughness at the tip apex by the Pd coating on Si FEA, via the decrease of the apex radius at which electrons are emitting. The Pd-coated emitters showed superior operating stability over a wide current range to that of the uncoated ones. This suggests that Pd coating enhances the high temperature stability and the surface inertness Si FEA.

  • PDF

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Formation of Cobalt Ferrite Epitaxial Iron Oxide and Their Magnetic Properties(II) (코발트 훼라이트 에피탁시얼 산화철의 생성과 자기특성(II))

  • Byeon, T.B.;Kim, D.Y.;Lee, J.Y.;Lee, H.;Sohn, J.G.;Han, K.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 1992
  • Acicular ${\gamma}-Fe_{2}O_{3}$ particles were heated at $90^{\circ}C$ in alkaline solution containing mixed solution of dyadic metal with $Co^{+2}/Fe^{+2}$ ratio of 0.5. When cobalt content was increased, the coercivity of resultant product increased linearly, and surface area decreased. The cobalt ferrite was grown epitaxially on the surface ${\gamma}-Fe_{2}O_{3}$ crystal, and the increase of coercivity was attributed to the crystalline magnetic anisotropy of the cobalt ferrite which is conform to coating layer. We can expect superior magnetic properties above normal ratio of 2. The progress of reaction has an effect on coercivity of cobalt ferrite epitaxial iron oxide. The stability of temperature and the change om standin& of $Co-{\gamma}-Fe_{2}O_{3}$ was largely influenced by the composition of coating layer.

  • PDF

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • Choe, Geun-Pyo;Yang, Yeong-U;Yun, Ha-Jin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.

Solid-Phase Speciation of Copper in Mine Wastes

  • Jeong, Jae-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.209-218
    • /
    • 2003
  • Ecosystems in the Keweenaw Peninsula region of Lake Superior, USA, were disturbed by over 500 million tons of copper-rich mine tailings during the period 1850-1968. Metals leaching from these mine residues have had dramatic effects on the ecosystems. Vast acreages of exposed tailings that are over 100 years old remain unvegetated because of the combination of metal toxicity, absence of nutrients, and temperature and water stress. Therefore, it is important to characterize and fractionate solid copper phases for assessing labile forms of copper in soils and sediments contaminated by the mining wastes. X-ray diffraction analyses indicate that calcite, quartz, hematite, orthoclase, and sanidine minerals are present as major minerals, whereas cuprite,tenorite, malachite, and chalcopyrite might be present as copper minerals in the mining wastes. Sequential extraction technique revealed that carbonate and oxide fractions were the largest pools of copper (ca. 50-80%) in lakeshore and wetland stamp sands whereas the organic matter fraction was the largest reservoir (ca. 32%) in the lake sediments. The concentrations of iron and copper were inversely correlated in the oxide fraction suggesting that copper may occur as a surface coating on iron oxides. As particle size and water contents decrease, the percent of the copper bound to the labile carbonate fraction increases.