• Title/Summary/Keyword: Metal organic deposition

Search Result 461, Processing Time 0.029 seconds

Development of High-Power AlGaAs SCH-SQW Laser Diode (고출력 AlGaAs SCH-SQW 레이저 다이오드 개발)

  • 손진승;계용찬;권오대
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.27-32
    • /
    • 1993
  • Separate-confinement hetero-structure (SCH) broad area Laser Diodes (LD's) were fabricated from $Al_{0.07}$Ga$_{0.93}$/. As single-quantum-well (SQW) grown by metal organic chemical vapor deposition (MOCVD). Under pulsed operation, we obtained maximum output powers of about 0.8watt/facet and 1.83watt/facet from LD's with 60$\mu$m and 160$\mu$m channel width, respectively, without facet coatings. The differential quantum efficiency of the 60$\mu$m wide LD was about 21.7%/facet and its threshold current density was about 1k [A/cm$^{2}$]. The differential quantum efficiency of the 160$\mu$m wide LD was about 25.6%/facet and its threshold current density was about 1k[A/cm$^{2}$]. The minimum threshold current density of 60$\mu$m wide LD's was 620[A/cm$^{2}$] when the cavity length was 603$\mu$m and the minimum threshold current density of 160$\mu$m wide Ld's was 675[A/cm$^{2}$] when the cavity length was 752$\mu$m. The internal quantum efficienty and the internal loss of both LD's were 92.3% and 18.1cm$^{1}$, respectively.

  • PDF

The Microstructure and Ferroelectric Properties of Ce-Doped Bi4Ti3O12 Thin Films Fabricated by Liquid Delivery MOCVD

  • Park, Won-Tae;Kang, Dong-Kyun;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.403-406
    • /
    • 2007
  • Ferroelectric Ce-doped $Bi_4Ti_3O_{12}$ (BCT) thin films were deposited by liquid delivery metal organic chemical vapor deposition (MOCVD) onto a $Pt(111)/Ti/SiO_2/Si(100)$ substrate. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to identify the crystal structure, the surface, and the cross-section morphology of the deposited ferroelectric flims. After annealing above $640^{\circ}C$, the BCT films exhibited a polycrystalline structure with preferred (001) and (117) orientations. The BCT lam capacitor with a top Pt electrode showed a large remnant polarization ($2P_r$) of $44.56{\mu}C/cm^2$ at an applied voltage of 5 V and exhibited fatigue-free behavior up to $1.0{\times}10^{11}$ switching cycles at a frequency of 1 MHz. This study clearly reveals that BCT thin film has potential for application in non-volatile ferroelectric random access memories and dynamic random access memories.

Characteristics analysis of Piezoelectric Thin Film SAW filter using Mg-doped GaN/Sapphire Structure (Mg-Doped GaN/Sapphire 구조로 제작된 압전 박막 SAW 필터의 특성분석)

  • 장철영;정은자;정영철;최현철;이정희;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.759-762
    • /
    • 2003
  • The epitaxially grown Mg-doped GaN thin film was prepared by MOCVD (Metal Organic Chemical Vapor Deposition) for a SAW(Surface Acoustic Wave) filter. Mg-doped GaN thin film had enough properties for a SAW filter which include crystallinity and morphology. The surface morphology and crystalline of the Mg-doped GaN thin films were characterized using AFM and an X-ray rocking curve. The SAW filter, which was fabricated by lift-off process and frequency response, was measured by HP 8753C network analyzer. Center frequency was 96.687 MHz and SAW velocity was 5801 m/s when wavelength(λ) was 60${\mu}{\textrm}{m}$. Insertion loss was over -10 dB, Q was factor over 200, and side lobe attenuation was over 22 dB which was suitable for use as a SAW filter. Electro-mechanical coupling coefficient (k$^2$) was calculated from the measured data. k$^2$ was from 1 % to 1.44 %. The fabricated SAW filter using Mg-doped GaN/sapphire structure has good qualities as a filter and will be used as a SAW filter for operating RF frequency.

  • PDF

P-type Capacitance Observed in Nitrogen-doped ZnO (ZnO에서 질소 불순물에 의한 p-type Capacitance)

  • Yoo, Hyun-Geun;Kim, Se-Dong;Lee, Dong-Hoon;Kim, Jung-Hwan;Jo, Jung-Yol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.817-820
    • /
    • 2012
  • We studied p-type capacitance characteristics of ZnO thin-film transistors (TFT's), grown by metal organic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at $450^{\circ}C$ and the other grown at $350^{\circ}C$. ZnO grown at $450^{\circ}C$ showed smooth capacitance profile with electron density of $1.5{\times}10^{20}cm^{-3}$. In contrast, ZnO grown at $350^{\circ}C$ showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the $SiO_2$ interface. Current-voltage and capacitance-voltage data support that p-type characteristics are observed only when background electron density is very low.

Growth and Characterization of P-type Doping for InAs Nanowires during Vapor-liquid-solid and Vapor-solid Growth Mechanism by MOCVD

  • Hwang, Jeongwoo;Kim, Myung Sang;Lee, Sang Jun;Shin, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.328.2-328.2
    • /
    • 2014
  • Semiconductor nanowires (NWs) have attracted research interests due to the distinct physical properties that can lead to variousoptical and electrical applications. In this paper, we have grown InAs NWs viagold (Au)-assisted vapor-liquid-solid (VLS) and catalyst-free vapor-solid (VS) mechanisms and investigated on the p-type doping profile of the NWs. Metal-organic chemical vapor deposition (MOCVD) is used for the growth of the NWs. Trimethylindium (TMIn) and arsine (AsH3) were used for the precursor and diethyl zinc (DEZn) was used for the p-type doping source of the NWs. The effectiveness of p-type doping was confirmed by electrical measurement, showing an increase of the electron density with the DEZn flow. The structural properties of the InAs NWs were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, we characterize atomic distribution of InAs NWs using energy-dispersive X-ray spectroscopy (EDX) analysis.

  • PDF

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

A Study on the Reflow Characteristics of Cu Thin Film (구리 박막의 Reflow 특성에 관한 연구)

  • Kim, Dong-Won;Gwon, In-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.124-131
    • /
    • 1999
  • Copper film, which is expected to be used as interconnection material for 1 giga DRAM integrated circuits was deposited on hole and trench patterns by Metal Organic Chemical Vapor Deposition(MOCVD) method. After a reflow process, contact and L/S patterns were filled by copper and the characteristics of the Cu reflow process were investigated. When deposited Cu films were reflowed, grain growth and agglomeration of Cu have occurred in surfaces and inner parts of patterns as well as complete filling in patterns. Also Cu thin oxide layers were formed on the surface of Cu films reflowed in $O_2$ambient. Agglomeration and oxidation of Cu had bad influence on the electrical properties of Cu films especially, therefore, their removal and prevention were studied simultaneously. As a pattern size is decreased, preferential reflow takes place inside the patterns and this makes advantages in filling patterns of deep submicron size completely. With Cu reflow process, we could fill the patterns with the size of deep sub-micron and it is expected that Cu reflow process could meet the conditions of excellent interconnection for 1 giga DRAM device when it is combined with Cu MOCVD and CMP process.

  • PDF

Fabrication and Electrical Characteristics of a Lateral type GaN Field Emission Diode

  • Lee, Jae-Hoon;Lee, Hyung-Ju;Lee, Myoung-Bok;Hahm, Sung-Ho;Lee, Jung-Hee;Choi, Kue-Man
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.647-650
    • /
    • 2002
  • A lateral type GaN field emission diodes were fabricated by utilizing metal organic chemical vapor deposition (MOCVD). In forming the pattern, two kinds of procedures were proposed: a selective etching method with electron cyclotron resonance-reactive ion etching (ECR-RIE) or a simple selective growth by utilizing $Si_3N_4$ film as masking layer. The fabricated device using the ECR-RIE exhibited electrical characteristics such as a turn-on voltage of 35 V for 7 ${\mu}m$ gap and an emission current of ${\sim}580$ nA/10tips at anode-to-cathode voltage of 100 V These new field emission characteristics of GaN tips are believed to be due to a low electron affinity as well as the shorter inter-electrode distance.

  • PDF

$H_2$ plasma treatment effects on electrical and optical properties of the BZO (ZnO:B) thin films

  • Yoo, Ha-Jin;Son, Chan-Hee;Choi, Joon-Ho;Kang, Jung-Wook;Cho, Won-Tae;Park, Sang-Gi;Lee, Yong-Hyun;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.309-309
    • /
    • 2010
  • We have investigated the effect of $H_2$ plasma treatment on the BZO (ZnO:B, Boron doped ZnO) thin films. The BZO thin films are prepared by LP-MOCVD (Low Pressure Metal Organic Chemical Vapor Deposition) technique and the samples of BZO thin film are performed with $H_2$ plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. After exposing $H_2$ plasma treatment, measurement of transmittance, reflectance and haze spectra in 300~1100 nm, electrical properties as resistivity, mobility and carrier concentration and work function was analysed. Regarding the results of the $H_2$ plasma treatment on the BZO thin films are application to the TCO for solar cells, such as the a-Si thin films solar cell.

  • PDF

Single Crystalline InxGa1-xAs Nanowires on Si (111) via VLS Method (VLS 방법을 이용한 단결정 InxGa1-xAs 나노와이어 성장과 조성비 변화에 대한 특성측정)

  • Shin, Hyun Wook;Shin, Jae Cheol;Choe, Jeong-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Single crystalline $In_xGa_{1-x}As$ nanowires are grown on Si (111) substrate via Vapor-Liquid-Solid growth mode using metal-organic chemical vapor deposition. The ternary nanowires have been grown with various growth conditions and examined by electron microscopy. The alloy compositions of the nanowires has been investigated using Energy-dispersive X-ray spectroscopy. We have found that the composition gradient of the nanowire becomes larger with growth temperature and V/III ratio.