• 제목/요약/키워드: Metal organic chemical vapor deposition

검색결과 314건 처리시간 0.029초

Characterization of Ultra Low-k SiOC(H) Film Deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.69-72
    • /
    • 2012
  • In this study, deposition of low-dielectric constant SiOC(H) films by conventional plasma-enhanced chemical vapor deposition (PECVD) were investigated through various characterization techniques. The results show that, with an increase in the plasma power density, the relative dielectric constant (k) of the deposited films decreases whereas the refractive index increases. This is mainly due to the incorporation of organic molecules with $CH_3$ group into the Si-O-Si cage structure. It is as confirmed by FT-IR measurements in which the absorption peak at 1,129 $cm^{-1}$ corresponding to Si-O-Si cage structure increases with power plasma density. Electrical characterization reveals that even after fast thermal annealing process, the leakage current density of the deposited films is in the order of $10^{-11}$ A/cm at 1.5 MV/cm. The reliability of the SiOC(H) film is also further characterized by using BTS test.

The performance of the Co gate electrode formed by using selectively chemical vapor deposition coupled with micro-contact printing

  • Yang, Hee-Jung;Lee, Hyun-Min;Lee, Jae-Gab
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1119-1122
    • /
    • 2005
  • A selective deposition of Co thin films for thin film transistor gate electrode has been carried out by the growth with combination of micro-contact printing and metal organic chemical vapor deposition (MOCVD). This results in the elimination of optical lithography process. MOCVD has been employed to selectively deposit Co films on preformed OTS gate pattern by using micro-contact printing (${\mu}CP$). A hydrogenated amorphous silicon TFT with a Co gate selectively formed on SAMs patterned structure exhibited a subthreshold slope of 0.88V/dec, and mobility of $0.35cm^2/V-s$, on/off current ratio of $10^6$, and a threshold voltage of 2.5V, and thus demonstrating the successful application of the novel bottom-up approach into the fabrication of a-Si:H TFTs.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동 (Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition)

  • 정우광;장재민;최승규;김진열
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.535-541
    • /
    • 2008
  • Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with $1{\sim}2nm$ height and $40{\sim}50nm$ diameter were formed by the S-K growth mode. Dome shape InGaN dots with $200{\sim}400nm$ diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).

The Characterization of ZnO Hybrid Structure Grown by Metal-organic Chemical Vapor Deposition

  • 김아영;장삼석;이도한;임소영;변동진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • The growth of three-dimensional ZnO hybrid structures by metal-organic chemical vapor deposition was controlled through their growth pressure. Vertically aligned ZnO nanorods were grown on c-plane sapphire substrate at $600^{\circ}C$ and 400 Torr. ZnO film was then formed in-situ on the ZnO nanorods at $600^{\circ}C$ and 10 Torr. High-resolution X-ray diffraction and transmission electron microscopy measurements showed that the ZnO film on the nanorods/sapphire grew epitaxially, and that the ZnO film/nanorods hybrid structures had well-ordered wurtzite structures. The hybrid ZnO structure was shown to be about 5 ${\mu}m$ by field-emission scanning electron microscopy. The hybrid structure showed better crystalline quality than mono-layer film on sapphire substrate. Consequently, purpose of this work is developing high quality hybrid epi-growth technology using nano structure. These structures have potential applicability as nanobuilding blocks in nanodevices.

  • PDF

In-situ SiN 박막을 이용하여 성장한 GaN 박막 및 LED 소자 특성 연구 (A Study of Properties of GaN and LED Grown using In-situ SiN Mask)

  • 김덕규;유인성;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.945-949
    • /
    • 2005
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition (MOCVD) and study the physical properties of the GaN layer. We have also fabricate PN junction light emitting diode (LED) to investigate the effect of the SiN mask on its optical property By inserting a SiN mask, (102) the full width at half maximum (FWHM) decreased from 480 arcsec to 409 arcsec and threading dislocation (TD) density decreased from $3.21{\times}10^9\;cm^{-2}$ to $9.7{\times}10^8\;cm^{-2}$. The output power of the LED with a SiN mask increased from 198 mcd to 392 mcd at 20 mA. We have thus shown that the SiN mask improved significantly the physical and optical properties of the GaN layer.

Ti-Al 반사막을 이용한 405 nm LED의 광추출 효율 향상 (Enhancement in the light extraction efficiency of 405 nm light-emitting diodes by adoption of a Ti-Al reflection layer)

  • 김창연;권새롬;이두형;노승정
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.211-214
    • /
    • 2008
  • Metal organic chemical vapor deposition (MOCVD)를 이용하여 사파이어 기판 위에 405 nm의 파장을 갖는 GaN light-emitting diode (LED)를 제작하였다. LED의 InGaN 활성층에서 생성되어 칩의 후면으로 향하는 광자를 전면으로 반사시키기 위하여, 사파이어 기판 후면에 반사막을 증착하였다. 반사막으로는 Al을 사용하였으며, 사파이어 기판에 대한 Al 박막의 접착력을 개선하기 위하여 사파이어 기판 후면에 Ti를 먼저 증착한 후에 Al을 증착하였다. Ti-Al 반사막을 채용한 결과, 광추출 효율이 52 % 향상되었다.

실리콘 기판상의 ZnO 박막의 성장 및 구조적 특성 (Growth and structural characterization of ZnO thin film on silicon substrate by MOCVD method)

  • 김광식;이정호;김현우
    • 한국진공학회지
    • /
    • 제11권2호
    • /
    • pp.97-102
    • /
    • 2002
  • 유기금속화학기상증착방법 (metal-organic chemical vapor deposition : MOCVD)을 이용하여 실리콘 (100) 기판위엔 ZnO막을 증착하였다. 공정온도 ($250^{\circ}C$~$400^{\circ}C$)와 Ar과 $O_2$가스의 유량 비 변화에 따른 ZnO막의 특성변화를 조사하였다. 막의 결정성은 공정온도가 증가함에 따라 향상되었으며 $400^{\circ}C$에서 $0.4^{\circ}$의 반치폭(full width at half maximum : FWHM)을 얻었다. 공정온도 변화에 따른 표면 평활도(surface smoothness)변화는 결정성과 반대의 경향성을 보였다.