• Title/Summary/Keyword: Metal on metal

Search Result 17,544, Processing Time 0.061 seconds

Effect of Light Metal Ions and Competition among Heavy Metal Ions during the Adsorption of Heavy Metal Ions by Bark (수피에 의한 중금속 흡착시 경금속의 영향과 중금속간의 흡착 경쟁)

  • Paik, Ki-Hyon;Kim, Dong-Ho;Choi, Don-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.115-118
    • /
    • 1997
  • When the light metals such as $Ca^{++}$ and $Mg^{++}$ were added to heavy metal solution, the adsorption of heavy metals was increased by 20 to 30% more, but there were no differences between species. $Pb^{++}$ was the most adsorbed metal(99.5%), and the adsorption ratio of $Cd^{++}$ was significantly improved. In addition, when the light metal concentration was increased to 100ppm, the adsoption ratios of all four heavy metals were reached to 92 to 99%, while coniferous barks showed only 85 to 92%. On the mixture of four heavy metals, the adsorbed amount of each metal was significantly reduced, compared with that of one heavy metal, while $Zn^{++}$ showed the adsorption improvement to 95%. On the column experiment, $Pb^{++}$ was almost completely adsorbed in the upper part of column, and the adsorbed amount of $Cu^{++}$ was gradually decreased depending on column depth. However, $Cd^{++}$ and $Zn^{++}$ were not influenced by column height, and constantly adsorbed on various column height. Based on the above results, each heavy metal had different adsorption mechanism.

  • PDF

Spectral and Thermal Studies of Transition Metal PSSA Ionomers

  • Shim, Il-Wun;Risen, William M. Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.368-376
    • /
    • 1988
  • Transition metal PSSA ionomers containing Co(II), Ni(II), Cr(III), Ru(III), and Rh(III) are investigated by IR, Far-IR, UV-Vis and DSC. Reliable IR Spectroscopic criteria are established for assessing the degree of ion-exchange of PSSA ionomers and the local structures around metal cations in them. In the hydrated transition metal PSSA ionomers, the ionic groups are solvated by water molecules and there is no significant interactions between sulfonate group and metal cations. The visible spectra indicated that metal cations are present as [M$(H_2O)_6$]$^{n+}$ with Oh symmetry. Their $T_g$ values increase as the extent of ionic site concentration increases, but there is no direct dependence of $T_g$ on the nature of metal cations or their oxidation states. Thus, the water content in PSSA ionomer is found to have dominant influence on $T_g$ of hydrated transition metal PSSA ionomers. Dehydration of the hydrated transition metal PSSA ionomers results in direct interaction between ionic groups and significant color changes of the ionomers due to the changes of the local structures around metal cations. On the base of spectral data, their local structures are discussed. In case of dehydrated 12.8 and 15.8 mol % transition metal PSSA ionomers, no glass transition is observed in 25-$250^{\circ}C$ region and this is believed to arise from the formation of highly crosslinked structures caused by direct coordination of sulfonate groups of metal cations. In the 6.9 mol % transition metal PSSA ionomers, the glass transition is always observed whether they are hydrated or dehydrated and this is though to be caused by the sufficient segmental mobility of the polymer backbone.

Effect of various casting alloys and abutment composition on the marginal accuracy of bar-type retainer (합금의 종류와 지대주 성분이 바형 유지 장치의 변연 적합도에 미치는 영향)

  • Lee, Yun-Hui;Song, Young-Gyun;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • Purpose: The object of this study was to determine if the low-priced alloy and metal UCLA abutment could be available for manufacturing bar-retained framework of implant prosthesis. Materials and methods: Bar structure was classified into 4 groups, The specimen of group 1 and 2 were based on casting high noble metal alloys and noble metal alloys with gold UCLA abutment. The specimen of group 3 and 4 were based on casting noble metal alloys and base metal alloys with metal UCLA abutment. Cast bar structure was installed in an acrylic resin model and only the screw on the hexed abutment side was tightened to 20 Ncm. On the opposite side, vertical discrepancy was measured with stereo microscope from front, back, and lateral side of the implant-abutment interface. One-way ANOVA was performed to analyze the marginal fit discrepancy. Results: One-way ANOVA test showed significant differences among all groups ($P$<.05) except for Group 1 and 3. Among them, difference between Group 1 and 2 was noticeable. Measured vertical discrepancies were all below $70{\mu}m$ except to Group 2. Conclusion: Base metal alloy and metal UCLA abutment could be used as an alternative to high-priced gold alloy for implant bar-retained framework.

Contribution of Second Metal Binding Site for Metal Specificity of D-Xylose Isomerase

  • Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.757-763
    • /
    • 1999
  • The metal specificity of D-xylose isomerase from Streptomyces rubiginosus was examined by site-directed mutagenesis. The activation constants for metal ion ($Mg^{2+},{\;}Mn^{2+},{\;}or{\;}Co^{2+}$) of wild-type and mutant enzymes were determined by titrating the metal ion-free enzyme with $Mg^{2+},{\;}Mn^{2+},{\;}and{\;}Co^{2+}$, respectively. Substitutions of amino acids either on coordinated or around the M2 site (His-22O, Asn-185, Glu-186, and Glu-221) dramatically affected the activation constants as well as activity. A decrease of metal binding affinity was most significant in the presence of $Mg^{2+}$. When compared with the wild-type enzymes, the binding affinity of H220S and Nl85K for Mg^{2+} was decreased by 10-15-fold, while the affinity for $Mn^{2+}{\;}or{\;}Co^{2+}$ only decreased by 3-5-fold. All the mutations close to the M2 site changed their metal preference from $Mg^{2+}{\;}to{\;}Mn^{2+}{\;}or{\;}Co^{2+}$. These altered metal preferences may be caused by a relatively weak binding affinity of $Mg^{2+}$ to the enzyme. Thermal inactivation studies of mutants at the M2 site also support the importance of the M2 site geometry for metal specificity as well as the thermostability of the enzyme. Mutations of other important groups hardly affected the metal preference, although pronounced effects on the kinetic parameters were sometimes observed. This study proposes that the metal specificity of D-xylose isomerase can be altered by the perturbation of the M2 site geometry, and that the different metal preference of Group I and GroupII D-xylose isomerases may be caused by nonconserved amino acid residues around the M2 site.

  • PDF

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

A Study on the Metal Transfer Considering Fluid Flow in GMAW (가스 메탈 아크 용접에서 유체 유동을 고려한 금속 이행에 관한 연구)

  • 박기영;이세헌;엄기원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.148-155
    • /
    • 1998
  • It is commonly known that, in GMAW, the characteristics of metal transfer and the size of molten drop are highly dependent on the welding current. These changes in the characteristics of metal transfer has a considerable effect on the weld quality, and a lot of studies have been made on metal transfer modes for that reason. In this study, two cases were investigated; the one in which the metal transfer proceeds with gravitational force, surface tension, and no electromagnetic force, and the other in which the process has electromagnetic term in addition, where the current density in the fluid has been assumed to have Gaussian distribution on any given cross-section and it acts vertically. Using fluid flow analysis, this study has observed the whole process of the development and break-up of the molten drop, and it also showed that transitional processes, drop rate, and the drop size in each metal transfer mode can be estimated.

  • PDF

An Experimental Study on the Flame Stability of Natural Gas/Air Mixture on the Metal Mesh (금속매쉬에서 천연가스/공기 표면연소의 화염안정성에 관한 실험적 연구)

  • You, Hyun-Seok;Lee, Hyun-Chan;Lee, Joong-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.49-53
    • /
    • 2001
  • A conventional flame type gas combustion major portion of heat is transferred to the body by convection due to small radiant ability of the gas flame. Increasing the radiation component of heat flux in the combustion zone allows to augment the efficiency of gas utilization. Such effect can be reached by using radiative gas burner applied to metal mesh combustion. Basically the gas radiant burner consists of metallic mesh of high heat resisting steels. In terms of this regards, we have made the burner consisted of metal mesh and measured the radiative flame stability of natural gas/air mixture on the metal mesh burner. The pressure loss through the metal mesh is defined by pressure-velocity slope. The more increased the pressure-velocity slope of the metal mesh is, the wider the stable zone of radiave flame on the metal mesh burner is. And the augmentation of mixture flowrate through the metal mesh make narrow the permissible range of equivalence ratio.

  • PDF

High strength's union of mass layers metal bearing (고강성 다층 메탈베어링의 접합)

  • 전재억;황영모;김수광;계중읍;김준안;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.792-795
    • /
    • 2004
  • Despite is product that ship, vehicles, development equipment and Metal Bearing for plant equipment that is mass-produced by present domestic companies Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation is accomplishing master and servant and this is foreseen to be used widely on industry whole in hereafter but Cast White Metal Bearing need minuteness processing, while price competitive power is depending on income from superior another thing area than itself manufacture already in advanced nation to lowdown that the technique is generalized widely, when take into account technology change aspect of industrial technology developing country, Go added value creation by deepening of price competition is judged to be difficult hereafter. Because domestic production and supply are wholly lacking almost in Metal Bearing Cladding that take advantage of these technology, Data-base about connection technology is weak with technique and Know-How for product. This research unites Back Steel and Aluminium Alloy different kind metal and make the Clad river studying technology about union of Gogangseong Dacheung metal bearing hereupon.

  • PDF

Classification of metals inducing filed aided lateral crystallization (FALC) of amorphous silicon

  • Jae-Bok Lee;Se-Youl Kwon;Duck-Kyun Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.160-165
    • /
    • 2001
  • The effects of various metals on Field Aided Lateral Crystallization (FALC) behaviors of amorphous silicon (a-Si) were investigated. Under an influence of electric field, metals such s Cu, Ni and Co were found to fasten the lateral crystallization toward a metal-free region, exhibiting a typical FALC behavior while the lateral crystallization of a-Si was not obvious for Pd. However, Au, Al and Cr did not induce the lateral crystallization of a-Si in metal-free region. Such phenomenological differences in various metals were studied in terms of dominant diffusing species (DDS) in the reaction between metal and Si. It was judged that the applied electric field enhanced the crystallization velocity by accelerating the diffusion of metal atoms since the occurrence of lateral crystallization would be strongly dependent on the diffusion of metal atoms than that of Si atoms. Therefore, it was concluded that he only metal-dominant diffusing species in the reaction between metal and Si results in the crystallization of a-Si in metal-free region.

  • PDF