• 제목/요약/키워드: Metal loaded carbon

검색결과 17건 처리시간 0.02초

3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구 (Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent)

  • 김석준;김원기;이승목;양재규;이남희
    • 대한환경공학회지
    • /
    • 제31권7호
    • /
    • pp.541-548
    • /
    • 2009
  • 본 연구에서는 매립장 침출수 같은 중금속과 유기물을 함께 함유하고 있는 폐수를 처리하기위하여, Fe(III)을 활성탄, 모래, 불가사리와 같은 담체에 첨착 및 코팅시킨 흡착제를 사용하였다. 제조된 Iron Impregnated Activated Carbon(Fe-AC), Iron Coated Sand(ICS), Iron Coated Starfish(ICSF)는 EPA 3050B 방법을 통하여 각 매질에 함유된 철 함량을 분석하였으며, 회분식 반응조에서의 흡착실험을 통하여 각 흡착제의 Mn(II), Zn(II) 및 Cu(II)의 제거성능을 비교하였다. Fe-AC 및 ICS의 철 함유량은 각각 1,612 mg/kg 및 1,609 mg/kg으로서 매우 유사하였으며 ICSF의 철 함유량은 1,768 mg/kg으로 ICSF의 철 코팅함량이 다른 두 가지에 비해 150 mg/kg 정도 높게 나타났다. 회분식 실험에서의 Mn(II), Zn(II), Cu(II)의 제거효율은 ICSF, Fe-AC, ICS의 순으로 높은 제거율을 보였다. 각 흡착제를 단일 및 다중층으로 충전한 칼럼반응기에 의한 연속식 실험결과, 단일 흡착제에 비해 ICS, Fe-AC, ICSF의 순으로 충전한 시스템에서 높은 중금속 및 페놀제거효율을 나타내었으며, Cu(II)와 Zn(II)에 대해서는 뚜렷한 파과능을 보였으나 Mn(II) 제거율은 상대적으로 낮게 나타났다. 각 흡착제를 병합 충전한 다중층 칼럼반응시스템은 중금속 및 phenol제거에 효과적임을 알 수 있었다.

Polyol process를 통한 고비율 백금 담지 촉매 합성 (Novel route of enhancing the metal loading in highly active Pt/C electro-catalyst by polyol process)

  • 오형석;김한성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.560-563
    • /
    • 2008
  • A modified polyol process is developed to enhance Pt loading during the preparation of Pt/C catalysts. With the help of the zeta potential, the effect of pH on the electrostatic forces between the support and the Pt colloid is investigated. It is shown experimentally that the surface charge on the carbon support becomes more electropositive when the solution pH is changed from alkaline to acidic. However, this change does not affect the electronegative surface charge of Pt colloids already attained and stabilized by glycolate anions. This new behavior caused by the change in the solution pH accounts for the enhanced yield of the process and does not affect the Pt particle size. All our experimental results reveal that this simple modification is a cost effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells.

  • PDF

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves

  • Cho, Ki-Sook;Kim, Byung-Joo;Kim, Seok;Kim, Sung-Hyun;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.100-103
    • /
    • 2010
  • In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.

자동차 선적작업장의 공기오염 실태조사 (Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port)

  • 김지호;원종욱;김치년;노재훈
    • 한국산업보건학회지
    • /
    • 제16권1호
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

Ceramic 재질을 이용한 자동차용 대형 디젤엔진 Valve Lifter 연구 II. 사출성형에 의한 탄화규소질 Valve Lifter 개발 (Studies of Valve Lifer for Automotive Heavy Duty Diesel Engine by Ceramic Materials II. Development of SiC Valve Lifter by Injection Molding Method)

  • 윤호욱;한인섭;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제35권2호
    • /
    • pp.172-179
    • /
    • 1998
  • Valve lifter namely tappet is supported by lifter hole which is located upper side of camshaft in cylinder block transforms rotatic mvement of camshaft into linear movement and helps to open and shut the en-gine valve as an engine parts. The face of valve lifter which is continuously contacting with camshaft brings about abnormal wears such as unfair wear and early wear because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears therefore The valve lifter cast in me-tal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance As a results the optimum process conditions like injection condition mixture ratio and debonding process could be established. After sintering fine-sinered dual microstructure in which prior ${\alpha}$-SiC matches well with new SiC(${\beta}$-SiC) produced by reaction among the ${\alpha}$-SiC carbon and silicon was obtained. Based on the study it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100-1200 bending strength (300-350 Pa) fracture toughness(1.5-1.7 Mpa$.$m1/2) Through engine dynamo test-ing SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such as early fracture unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resis-tance relaibility and lightability.

  • PDF

저급석탄에 K2CO3와 Mn(NO3)2 및 Ce(NO3)3이 CO2-석탄 가스화 반응에 미치는 영향 (The Study of CO2 Gasification of Low Rank Coal Impregnated by K2CO3, Mn(NO3)2, and Ce(NO3)3)

  • 박상태;최용택;손정민
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.312-318
    • /
    • 2011
  • 촉매를 이용한 $CO_2$-석탄 가스화의 kinetic 및 촉매 활성에 대해 조사하였다. 석탄에 촉매로 $K_2CO_3$$Mn(NO_3)_2$, $Ce(NO_3)_3$를 진공증발기를 이용하여 담지하였다. 가스화 실험은 5 wt%의 촉매를 담지한 저급석탄을 TGA를 사용하여 온도 $700{\sim}900^{\circ}C$범위에서 $N_2$$CO_2$ 반응가스로 진행하였다. TGA 실험 결과 $900^{\circ}C$에서 모든 촉매의 종류에 관계없이 저급석탄은 탄소 전환율 100%에 도달하였으며 촉매 가스화속도는 5 wt% $K_2CO_3$ > 5 wt% $Mn(NO_3)_2$ > 5 wt% $Ce(NO_3)_3$ > Non-catalyst 순으로 나타났다. 가스화 속도는 온도가 증가함에 따라 증가하는 것을 관찰하였으며 5 wt% $K_2CO_3$의 경우 가스화반응 활성화 에너지가 119.0 kJ/mol로 가장 낮게 얻어졌다.

금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감 (Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides)

  • 조진오;이상백;장동룡;박종호;목영선
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.375-382
    • /
    • 2014
  • 금속산화물이 담지된 허니컴 형상의 플라즈마-촉매 반응기를 이용하여 아이소프로필 알코올(isopropyl alcohol, IPA) 저감 및 부산물 생성 거동에 대해 조사하였다. 허니컴 형상의 다공질 세라믹 지지체(주성분: ${\alpha}-Al_2O_3$)에 금속산화물로 산화철($Fe_2O_3$) 또는 산화구리(CuO)를 담지시킨 후, 이 촉매가 동축 원통형 전극구조 내부에 위치하도록 플라즈마-촉매 반응기를 구성하였다. 플라즈마 반응에 의한 IPA 분해속도가 매우 빨랐기 때문에 IPA 분해효율 자체는 금속산화물 담지 여부 및 금속산화물 종류에 관계없이 유사한 것으로 나타났으나, 부산물 생성거동은 촉매종류에 따라 큰 차이를 보여주었다. 아세톤, 폼알데하이드, 아세트알데하이드, 메테인, 일산화탄소 등의 유해 부산물 농도는 $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ 순으로 높게 나타났다. 유량 $1L\;min^{-1}$, IPA 초기농도 5,000 ppm(산소: 10%), 방전전력 47 W의 조건에서 얻어진 $CO_2$ 선택도는 ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$, $Fe_2O_3/{\alpha}-Al_2O_3$에 대해 각각 40, 80, 95%로서 $Fe_2O_3/{\alpha}-Al_2O_3$가 플라즈마-촉매를 이용한 IPA의 산화에 가장 효과적인 것으로 나타났다. 플라즈마를 단독으로 사용하여 휘발성유기화합물을 분해할 경우 타르형태의 생성물이 반응기에 퇴적되는 문제점이 있으나, 플라즈마-촉매 공정에서는 이러한 현상이 관찰되지 않았으며 촉매의 활성이 그대로 유지되었다.