• Title/Summary/Keyword: Metal hydrides

Search Result 53, Processing Time 0.022 seconds

Comparison of the Ligating Ability of Anonic Transition Metal Complex $(Mn(CO)_{5}{^-})$, Transition Metal Hydrides $(HCr(CO)_{5}{^-},\;HW(CO)_{5}{^-},\;cis-HW(CO)_{4}P(OMe)_{3}{^-},\;HFe(CO)_{4}{^-},\;trans-\;HFe(CO)_{3}P(OMe)_{3}{^-})$, and Traditional Ligands $(Br^-,\;P(C_{6}H_{5})_{3})\;to\;M(CO)_{5}{^0}$ (M = Cr, W)

  • Park, Yong K;Han, In S;Marcetta Y. Darensbourg
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.436-442
    • /
    • 1994
  • Heterobimetallic complexes have a donor-accepter metal-metal bond in which two electrons from the electron-rich metal moiety are donated to the other electron-deficient one. Based on the competition reactions, Cotton-Kraihanzel force constants, ν(CO)IR band resolution and the relative nucleophilicity comparison of the donor ligands, the following relative ligating ability of the donor ligands toward $M(CO)_5$ (M=Cr, W) is assessed: cis-HW$(CO)_4P(OMe)_3^-$, $HW(CO)_5^-$ > $HCr(CO)_5^-$-$Br^-$ > trans-HFe$(CO)_3P(OMe)_3^-$ > $Mn(CO)_5^-$ > $HFe(CO)_4^-$ > PP$h_3$

Review : Hydrogen Storage in Solid State (고체상 수소저장기술 동향)

  • Lee, Jun-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1153-1171
    • /
    • 2010
  • Hydrogen is the most abundant element in the universe. Although hydrogen can produce three times more energy than gasoline and seven times than coal, the most challenging problem in utilizing hydrogen as energy carrier is its storage problem. In contrast to the liquid hydrocarbon, hydrogen can not be stored or transported easily and safely because of its extremely low boiling point(21K). Recently scientists have made a tremendous achievement in storing hydrogen capacity in solid state materials such as carbon based and metal organic frameworks materials as well as metal hydrides. In this review the author reviewed the status of the hydrogen storage technologies in solid state, the advantages and disadvantages in each category of materials and the future prospects of hydrogen storage.

Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms (MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.

  • PDF

Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms (MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.1
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.

A Numerical Study on a Prediction of Performance of the Metal Hydride Thermal Conversion System through the Propagation Phenomena of Superadiabatic Thermal Waves (초단열 열파동의 전파현상을 활용하는 수소저장합금 열변환 시스템의 성능예측을 위한 수치해석적 연구)

  • Kim, Gyu-Jeong;Kim, Gwan-Yeong;Chae, Jae-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.572-582
    • /
    • 2001
  • A method of metal-hydride thermal conversion that is an alternative to the traditional method is proposed and investigated. The unit heat pump consists of reactors of two different metal-hydrides are distributed inside parallel channels filled with porous media. The channels are blown through with a heat-transfer agent. Thermal conversion develops as a set of successive heat waves. By a numerical-modeling method it is shown that the maximum thermal effect is attained in synchronous motion of the heat wave and the heat source (or sink) that accompanies the phase transition in the succession of unit metal-hydride pumps. The results are presented in a form convenient for prediction of the thermal and energy efficiency of the proposed thermal-conversion method in real devices.

Comparison of Bonding Characteristics of Hydrogen in Ti2Pd and Pd2Ti Alloys

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1879-1883
    • /
    • 2011
  • The electronic structure and bonding in $Ti_2Pd$ and $Pd_2Ti$ alloys with and without hydrogen as an interstitial atom were studied by performing extended Huckel tight-binding band calculations. The hydrogen absorption near an octahedral site is found to be a favorable process in $Ti_2Pd$ rather than in $Pd_2Ti$. In metal hydrides, the metal-hydrogen bonding contribution is crucial to the stability of the system. The stronger interaction of hydrogen with Ti atoms in $Ti_2PdH_2$ than with Pd atoms in $Pd_2TiH_2$ is analyzed by perturbation theory.

Hydrogen Absorption by Laves Phase Related BCC Solid Solution Alloys

  • Akiba, Etsuo
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.3
    • /
    • pp.101-109
    • /
    • 1997
  • We propose a new concept of hydrogen absorbing alloy, "Laves phase related BCC solid solution". It was firstly found among the phases tormed in multicomponent nominal $AB_2$ alloys which consisted of Zr and Ti for the A metal site and 5A, 6A and 7A transition metals for the B metal sites. In these alloys a BCC solid solution often coexisted with a Laves phase. It showed stability of hydrides and reaction kinetics almost identical to intermetallics such as Laves phase alloys. We prepared an almost pure "Laves phase related BCC solid solution" and found that it had a large hydrogen capacity (more than 2 mass%) and fast hydrogen absorption and desorption kinetics at ambient temperature and pressure. This new hydrogen absorbing alloy may open a new era of hydrogen related application such as hydrogen vehicles.

  • PDF