• Title/Summary/Keyword: Metal doping.

Search Result 315, Processing Time 0.028 seconds

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Flexible, Tunable, and High Capacity Ultracapacitor using Nitron-Doped Graphene (질소가 도핑된 그라핀을 이용한 고용량의 조절이 가능한 플렉서블 울트라커페시터)

  • Jeong, Hyung Mo;Shin, Weon Ho;Choi, Yoon Jeong;Kang, Jeung Ku;Choi, Jang Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • We developed a simple method to synthesis a nitrogen doped graphene, nitrogen plasma treated graphene (NPG) sheets thought nitrogen plasma etching of graphene oxide (GO). X-ray photo electron spectroscopy (XPS) study of NPG sheets treated at various plasma conditions reveal that N-doping is classified to 3 kinds of binding configurations. The nitrogen doping concentration is at least 1.5 at % and up to 3 at% with changing of ratio of nitrogen configuration in NPG. Our group demonstrate ultracapacitor with high capacity and extremely durable using a NPG sheets that are comparable to pristine graphene supercapacitor, and pseudocapacitor using polymer and metal oxide with redox reaction, capacitance that are three-times higher, and a cycle life that are extremely stable. We also realized flexible capacitor by using the paper electrode that are coated by NPG sheets. NPG paper capacitor presented almost same performance compare with NPG on a metal substrate, and durability is much more enhanced than that. To additionally explain that how different kind of atoms in graphene layers can act as the ion absorption sites, we simulated the binding energy between nitrogen in graphene layer and ions in electrolyte. Increasing the energy density and long cycle life of ultracapacitor will enable them to compete with batteries and conventional capacitors in number of applications.

  • PDF

A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment (비정질 및 단결정 실리콘에서 10~50 keV 에너지로 주입된 안티몬 이온의 분포와 열적인 거동에 따른 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.683-689
    • /
    • 2015
  • For the formation of $N^+$ doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a $SiO_2/Si$ is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert $N_2$ gas and dry oxidation.

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Fully Organic PIN OLEDs with High Power Efficiency and Long Lifetime for the Use in Display and Lighting Applications

  • Blochwitz-Nimoth, Jan;Birnstock, Jan;Wellmann, Philipp;Werner, Ansgar;Romainczyk, Tilmann;Limmert, Michael;Grubing, Andre
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.955-962
    • /
    • 2005
  • Power efficiency, lifetime and stable manufacturing processes are the crucial parameters for the success of organic light emitting diodes (OLEDs) in display and lighting applications. Highest power efficiencies of PIN-OLEDs for all principal colours and for bottom and top emission OLED structures have been demonstrated. The PIN structure, which means the incorporation of intentionally doped charge carrier transport layer in a suitable OLED layer setup, lowers the operating voltage to achieve highest power efficiencies. Up to now the n-doping of the electron transport layer has been done by alkali metal co-deposition. This has main draw-backs in terms of manufacturability, since the handling of large amounts of pure Cs is a basic issue in production lines. Here we present in detail results on PIN-OLEDs comprising a newly developed molecular n-dopant. All the previous OLED performance data based on PIN-OLEDs with alkali metal doping could be reproduced and will be further improved in the future. Hence, for the first time, a full manufacturing compatible PIN-OLED is available.

  • PDF

A study on the synthesis and formation behavior of nanostructrued TiN films by metal doping (금속원소 도핑에 따른 초고경도 나노구조 TiN 박막의 합성 및 형성 거동에 관한 연구)

  • 명현식;한전건
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.193-199
    • /
    • 2003
  • Ti-Cu-N and Ti-Ag-N nanocomposite films with various copper and silver contents were synthesized by arc ion plating and magnetron sputtering hybrid system. The structure and mechanical properties of these films were found to be dependant on the copper and silver concentration. The maximum hardness of Ti-Cu-N and Ti-Ag-N films showed approximately 40 ㎬ below 2 at%Me. The role of soft metallic phase in Ti-Me-N nanosturctured films containing one hard and one soft phase is also discussed.

The Mg Solid Solution far the P-type Activation of GaN Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Kim, KeungJoo;Chung, SangJo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.24-29
    • /
    • 2001
  • GaN films were grown for various Mg doping concentrations in metal-organic chemical vapor deposition. Below the Mg concentration of 10$^{19}$ ㎤, the thermally annealed sample shows the compensated phase to n-type GaN in Hall measurement. In the MB concentration of 4$\times$10$^{19}$ ㎤ corresponding to the hole carrier concentration of 2.6$\times$1$^{19}$ ㎤ there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the $V_{Ga}$ and for an acceptor of $Mg_{Ga}$ . The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photocurrent signal of 3.02-3.31 eV. Above the Mg concentration of 4$\times$10$^{19}$ ㎤, both the Mg doping level and Mg concentration were saturated and there Is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band.

  • PDF

Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions (알칼라인 조건에서의 산소발생반응을 위한 N-doped NiO 촉매)

  • Lee, Jin Goo;Jeon, Ok Sung;Shul, Yong Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.701-705
    • /
    • 2019
  • Oxygen-evolution reaction (OER) in alkaline media has been considered as a key process for various energy applications. Many types of catalysts have been developed to reduce high overpotential in OER, such as metal alloys, metal oxides, perovskite, or spinel. Nickel oxide (NiO) has high potential to increase OER activity according to volcano plots. The exact mechanisms for OER has not been discovered, but defects such as cation or anion vacancy typically act as an active site for diverse electrochemical reactions. In this study, nitrogen was doped into NiO by using ethylenediamine for formation of Ni vacancy, and the effects of N doping on OER activity and stability was studied.