• 제목/요약/키워드: Metal cutting

검색결과 461건 처리시간 0.024초

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

A Study on mold manufacture of multi-cavity dental iodine container using powder injection molding (분말사출성형을 이용한 다수 캐비티 치과용 요오드 용기 금형제작에 관한 연구)

  • Choi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2014
  • When iodine container for dental mouth treatment is opened, thread for treatment is cut by the blade in cap of container. Due to the problem of corrosion in a short period time after the reaction of metal blade to iodine solution, it gives impact on patient hygiene. In order to solve the problem, alternative products such as ceramic blade are developed and produced recently. In case of ceramic blade, it is produced by handwork and machine work. In this study, for the quantity production of ceramic blade with powder injection molding, we proposed a delivery system to have uniform charge of 20 cavity. Using Moldflow, simulation on 20 Cavity flow was performed. And then the mold was obtained through mold production and modification.(based on simulation) After injection molding, debinder, sintering process was achieved for ceramic blade, and the cap product was completed via insert injection on ceramic blade. In this study, we verified possibility of quantity production of ceramic blade which showed effective performance for cutting.

Study of Optimal Machining Conditions of Ultrasonic Machining By Taguchi's Method (다구찌 방법을 이용한 초음파 가공의 최적가공조건에 관한 연구)

  • Liu, Jun Wei;Jin, Jian;Ko, Tae Jo;Baek, Dae Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제37권2호
    • /
    • pp.213-218
    • /
    • 2013
  • Ultrasonic machining (USM) is a new method used in metal cutting. This process does not involve heating or any electrochemical effects, causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials such as glass or ceramics. However, the use of USM for brittle materials generates cracks on the workpiece. Therefore, in this study, Taguchi's method was used to optimize the processing conditions of micro holes drilled in glass and ceramics. This method was used to successfully reduce the number of cracks at the entrance and the exit of the micro holes.

Indoor and Outdoor Concentrations of Air Pollutants in Beauty Shops at kwangju Area

  • Son Bu-Soon;Song Mi-Ra;Yang Won-Ho;Park Jong-An
    • Journal of Environmental Science International
    • /
    • 제15권2호
    • /
    • pp.101-106
    • /
    • 2006
  • The work of hairdressers includes washing, coloring, bleaching, permanent waving, conditioning, and cutting hair. Hairdressers are subjected to a number of physical and toxicological hazards. The toxicological hazards are those resulting from exposure to a wide range of chemicals that are usually classified active processes. In this study, twenty beauty shops were selected to assess the exposure to indoor air pollutants such as VOCs and particulate matter $(PM_{10})$ during one month from September 1 to September 30, 2003. Indoor air quality of beauty shops might be worse by vehicle emissions because the beauty shops were generally located near roadways. Personal exposures to VOCs and $PM_{10}$ were related to indoor concentrations of beauty shops. According to the questionnaire, hairdressers complained of sore throat, eye irritation, and nervousness as physical symptoms. The measured mean concentrations of respiratory particulates were $30.5ng/m^3$ in indoor, $30.5ng/m^3$ in outdoor and $44.0ng/m^3$ on personal levels. The personal concentration was found higher than indoor and outdoor concentrations. The heavy metals mean concentrations were shown as indoor (Na>Zn>Cr), outdoor (Cr>Zn>Pb), and personal (Na>Cr>Zn) levels. Conclusively, customers as well as workers in the beauty shops might be highly exposed to air pollutants from indoor and outdoor sources. Therefore, proper management should be taken to improve the indoor air quality in beauty shops.

Immersion Corrosion Characteristic of SUS420J2 Steel with a Material for Fish Pre-Processing Machinery (어류 전처리 가공기계용 재료 SUS420J2강의 침지부식 특성)

  • 김선진;안석환;최대검;정현철;김상수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제38권1호
    • /
    • pp.79-88
    • /
    • 2002
  • 13%Cr martensitic stainless steel has been used mainly with a material for fish pre-processing machinery. However, it has not very nice cutting section because of little of the carbon content. Therefore, SUS420J2 steel that contents 0.3%C with high-strength in spite of the rust is used with a material for fish pre-processing machinery. However, studies on the corrosion characteristics of SUS420J2 steel are relatively rare. Especially, the corrosion phenomenon may cause serious degradation because the fish pre-processing machinery is exposed always to seawater environment. In this paper, the immersion corrosion test was carried out at seawater environment (pH=7.52) on SUS420J2 steel specimens that have various post-treatment conditions and its corrosion characteristics were evaluated. From test results, the specimens such as base metal, vacuum heat treatment, electrolytic polishing and tempering after quenching tend somewhat sensitive from the corrosion. In the case of vacuum heat treatment specimen of continuous immersion during 360 days, the weight loss ratio was high about seven times when compared with the different specimens. On the contrary, SUS420J2 steel specimen that has the heat treatment of tempering after quenching and the electrolytic polishing was less sensitive from the corrosion, and the weight loss ratio was very low.

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

Influence of Manufacturing Conditions on the Reflectance and Life Time of the Gold Protected IR Mirror (금 증착 적외선 반사판의 반사율 및 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • 제28권4호
    • /
    • pp.201-207
    • /
    • 2018
  • Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, $Al_2O_3$ coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with $Al_2O_3$ as the anti-oxide layer, coated Cr as the adhesion layer, and coated $MgF_2$ as the protection layer.

A Study on the Actual Condition for Air Respirators Using Air-breathing (공기호흡기용 압축공기 시스템에 대한 실태 연구)

  • Lee Chang-Woo;Lee Young-Jae;Hyun Seong-Ho;Seong Jae-Man;Song Yun-Suk;Choi Don-Muk;Yoon Myung-O
    • Fire Science and Engineering
    • /
    • 제18권4호
    • /
    • pp.16-21
    • /
    • 2004
  • This paper has investigated influences of pollutants in air-breathing on the respirators and it by year of disused air respirators that fire fighter is using in domestic cutting done air respirators after collection observed state of cylinder material through instrumental analysis, and cut open pipe to confirm pollution degree of pipe from cylinder of air respirators to airline mask and confirm pollution availability. The metal surface inside the air respirators was corroded by moisture included in the compressed air. The material generated by corrosion is white powder of less then 100㎛, which is analyzed as aluminum hydroxide corroded by moisture. This aluminum hydroxide powder may get into the lung while one breathes in, and it is easy to be attached to the lung so it will cause a serious influences to human health. This study suggests that Korea should set out the standards for components and composition of breathing air as soon as possible.

Analysis of dimension precision of mobile device components according to the clearance in blanking process using CAE (CAE를 활용한 모바일 디바이스 부품의 블랭킹 공정 시 클리어런스에 따른 치수정밀도 분석)

  • Kim, Tae-Min;Choi, Doo-Sun;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.7-13
    • /
    • 2020
  • For one decades, mobile devices components were made with plastic material, but environmental problems have recently replaced them with metal materials such as aluminum. Generally, aluminum components are mostly produced through cutting, but this process has limitations such as productivity and chip recycling. For this reason, many researches are conducted to improve productivity by replacing with the forging press process for manufacturing mobile device components. After forging process, the flash is remained and it is necessary to eliminate the flash from the final shape of components. In this paper, one-sided clearance for blanking aluminum material wes selected for parameter affected to the dimensional precision. Because the clearance is the most important parameter in blanking process. Deriving the clearance of blanking process for high dimensional precision, five level of one-sided clearance is selected and CAE is used to analyze the dimensional precision for each case.

Control of Manganese Nodule Characteristics by Volcanic Activity in the NE Equatorial Pacific (북동 태평양 KR1 광구의 망간단괴 산출특성)

  • Kim, Wonnyon;Yang, Seung Jin;Chi, Sang-Bum;Lee, Hyun-Bok
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.373-381
    • /
    • 2014
  • Korea contract Mn-nodule field in the NE equatorial Pacific is composed of seven sectors with average water depths of 4,513-5,025 m. Of the various factors controlling the properties of Mn-nodule, it seems that water depth is likely connected to the chemical composition and occurrence of nodules. To test whether such an assumption held in each sector, we reviewed previous research data accumulated since 1994 for one of the northern sectors (hereafter KR1) where there are stark contrasts in water depth. High-resolution seabed mapping clearly separates a northern part (KR1N) from a deeper southern part (KR1S), cutting across in the middle of the KR1. In addition, significant volcanic activities forming numerous seamounts are distinctive especially in KR1N. In terms of nodule occurrence, manganese nodules in KR1S are comparatively larger (2-4 cm) with a discoidal shape, while those in KR1N are generally small (<2 cm) with poly-lobate and irregular shapes. Nodules in KR1N also have lower Co, Cu, Mn and Ni, and higher Fe contents. The spatial separation in nodule characteristics might be caused by volcanic activities in KR1N rather than water depth contrast. During the formation of the seamounts in KR1N, rock fragments and volcanic ashes as new nuclei of the nodules would have been continuously generated. As a result, the nodules could not grow larger than 2 cm and display the shapes of a newbie (i.e., irregular and poly-lobate shapes). Moreover, significant Fe supply from volcanic activities probably decreases the Mn/Fe ratio, which may lead to the KR1 nodules being misinterpreted as a hydrogenic in origin compared to other sectors where a high Mn/Fe ratio is present.