• Title/Summary/Keyword: Metal compound

Search Result 534, Processing Time 0.026 seconds

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Study on the Analysis of Wear Phenomena of Ion-Nitrided Steel (이온질화 처리강의 마모현상 분석에 관한 연구)

  • Cho, Kyu-Sik
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.42-52
    • /
    • 1997
  • This paper deals with wear characteristics of ion-nitrided metal theoretically and experimentally in order to analysis of wear phenomena. Wear tests show that compound layer of ion-nitrided metal reduces wear rate when the applied wear load is mall. However, as th load becomes large, the existence of compound layer tends to increase wear rate. The residual stress at the surface of ion-nitrided metal is measured, and the internal stress distribution is calculated when the normal and tangential forces are applied to the surface of metal. Compressive residual stress is largeest at the compound layer, and decreases as the depth from the surface increases. Calculation shows that the maximum stress exists at a certain depth from the surface when normal and tangential force are applied, and that the larger the wear load is the deeper the location of maximum stress becomes. In the analysis, it is found that under small applied wear load the critical depth, where voids and cracks may be created and propagated, is located at the compound layer, as the adhesive wear, where hardness is an important factor, is created the existence of compound layer reduces the amount of wear. When the load becomes large the critical depth is located below the compound layer, and delamination, which may be explained by surface deformation, crack nucleation and propagation, is created, and the existence of compound layer increases wear rate.

Study on the Improvement of Brazeability for Copper-Aluminum Dissimilar Materials Joint (구리-알루미늄 이종재료의 브레이징 특성 향상에 관한 연구)

  • 정호신;배동수;고성우
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.49-57
    • /
    • 2001
  • One of the most important considerations to braze Cu-Al dissimilar materials is control of brittle metallic compound which makes it difficult to obtain a sound brazed joint. Nowdays, several attempts were made to control the metallic compound. But effective method for controlling metallic compound was not established. In this point of view, commercially pure aluminum and copper were used as base metal and Al-Si-X and Zn-Al-X alloy systems were developed as filler metal. Brazing was carried out to find optimum conditions for Cu-Al dissimilar joint. The results obtained in this study were summarized as follows: 1) The joint brazed by Al-Si-X filler metal showed good brazeability and mechanical properties. The tensile strength of the joint brazed over solidus temperature was more than 90% of Al base metal. Especially, the joint brazed at liquidus temperature was fractured in the Al base metal. 2) Fluorides fluxes(a mixture of potassium fluoro-aluminates) were used to improve surface cleanliness of base metal and wettability of Al-Si-X filler metal. It was melted at the temperature about 1$0^{\circ}C$ lower than that of the filler metal, and made appropriate brazing environment. Therefore, it could be a proper selection as flux.

  • PDF

A Study on Mechanical and Electrical Properties at Interfaces Between Epoxy and ifs Molded Metal (에폭시 매입금구 표면거칠기에 따른 전기적, 기계적 특성 연구)

  • 김수연;하영길;이성진;김영성;박완기;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.226-229
    • /
    • 1999
  • Epoxy compound has been used as insulation material in electrical equipment for a long time because of its excellent electrical, mechanical and chemical properties. Nowdays, becoming higher voltage system, the properties of interface between epoxy and metal insert become more important. The breakdown voltage of epoxy compound for electric material is variable according to the surface roughness of metal insert. Generally, with metal insert sanding, the adhesion strength is enhanced and the breakdown strength is reduced. But in this study, we knew that the adhesion strength became enhanced but the breakdown strength didn\`t reduced with metal insert sanding. So in this study sanding. So in this study, we suggest the optimum interface condition by adjusting the surface roughness.

  • PDF

APPLICATION OF DISPROPORTIONATION REACTION TO SURFACE TREATMENT

  • Oki, Takeo
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.478-481
    • /
    • 1996
  • Disproportionation reaction is very important and interesting reaction to be applied to such surface treatment as metal, alloy, compound coating, a surface etching and so on. In gaseous system, the reaction of Al chloride is applied to Al and Al alloy coating, and the similar reaction of Ti chloride is also used for Ti, Ti alloy and Ti compound coating. As for aqueous system, this reaction is utilized to such metal coat as Sn etc. and metal etching such as Cu, Fe and so on. Also in molten salts system, this reaction has many application for surface treatment like metal, alloy and compound coatings for corrosion, wear, heat resistance and so forth. For instance, carbide film, nitride film, boride film, alloy film, quite new different film from the components of substrate material are coated in single and multiple component film system by the disproportionation reaction.

  • PDF

Analysis of Anthocyanidin in Mulberry of Cu Complex Compound and Natural Dyeing on Sangju Silk (오디의 안토시아니딘에 구리를 이용한 착화합물 합성 및 상주실크에 천연염색)

  • Lee, Kwang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.191-196
    • /
    • 2010
  • This study explores the solution of a variety of conditions of the natural dyeing with the Mulberry. To obtain this, the Cu complex compound was added into the extracts. The Mulberry extract was added the Copper acetate to obtain the Black sediment the metal complex compound of anthocyanidin. According to the result of using the complex compound of the solid material, the dyeing properties were excellent. The metal complex compound acted as a mordant, thus it reduced the process of mordanting in the natural dying.

  • PDF

The added carbon effect on residual stress in ion-nitriding (ION질화에 있어 첨가 탄소량이 잔류응력에 미치는 영향)

  • 김희송;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.35-46
    • /
    • 1982
  • This paper deals with residual stress characteristics of ion-nitrided metal which is primarilly concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness. The residual stress and deflection of the specimens was measured in various elevated temperature at the surface of ion-nitrided metal and the internal stress distribution was calculated. It is found that compressive residual stress at the compound layer is largest at the compound layer, and decreases as the depth from the surface increases.

  • PDF

Influence of Brazing Temperature on Strength and Structure of SUS304 Stainless Steel Brazed System with BNi-2 Filler Metal : Fundamental Study on Brazeability with Ni-Based Filler Metal(II) (BNi-2계 삽입금속에 의한 SUS304 스테인리스강 접합체의 강도와 조직에 미치는 브레이징 온도의 영향 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(II))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • A plate heat exchanger (PHE) normally uses vacuum brazing technology for connecting plates and fins. However, the reliability of high temperature brazing, especially with nickel-based filler metals containing boron the formation of brittle intermetallic compounds (IMCs) in brazed joints is of major concern. since they considerably degrade the mechanical properties. This research was examined the vacuum brazing of commercially SUS304 stainless steel with BNi-2 (Ni-Cr-B-Si) filler metal, and discussed to determine the influence of brazing temperatures on the microstructure and mechanical strength of brazed joints. In the metallographic analysis it is observed that considerable large area of Cr-B intermetallic compound phases at the brazing layer and the brazing tensile strength is related to removal of this brittle phase greatly. The mechanical properties of brazing layer could be stabilized through increasing the brazing temperature over $100^{\circ}C$ more than melting temperature of filler metals, and diffusing enough the brittle intermetallic compound formed in the brazing layer to the base metal.

A Study of Effects Exerted on the Mechanical Properties of the Steel and Cast Iron by the Adding B (B첨가에 의한 강 및 주철의 기계적 성질에 미치는 효과)

  • 황용연;권오헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2368-2373
    • /
    • 1994
  • The advancement of the mechanical properties of metal materials caused by a recent high technology contributes to the stability and productivity of mechanical structures. However, the advanced mechanical properties depends on the conditions of crystal boundaries and the improvement of the texture. Although the tensile strength and a hardness of a steel would be increased by the adding B, it seems to be a marked decreases of the toughness which caused in the weaken workability. This study is concerned with a characteristics of the B compound which will be mixed with $H_3BO_3$ and the metallic magnesium. What affected in the mechanical property and texture is checked by the strength and the texture test. As a result, it is shown that the improvement of the mechanical property and the texture homogeneity. In addition, it seems that a molten metal which is added by the B compound is deoxized and cleansed.

Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle (플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.