• Title/Summary/Keyword: Metal composite

Search Result 1,292, Processing Time 0.035 seconds

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

A Study on Spindle Shape Design using Design of Experiments (실험계획법을 이용한 주축 형상 설계에 관한 연구)

  • Shin, Jae-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.120-127
    • /
    • 2009
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in vibration of spindle. This paper concerns the improvement of spindle design using design of experiments. To improve the design of critical speed and weight of spindle, the experiments using central composite method have been carried out. The targets are critical speed and weight of spindle. For optimization of critical speed and weight and optimization of only critical speed by operation of all area search through response optimizer, the result of analysis has improved design of each factor. Finite element analyses are performed by using the commercial codes ARMD, CATIA V5 and ANSYS workbench. From the results, it has been shown that the proposed method is effective for modification of spindle design to improve critical speed and weight.

Gas Transport Behavior of Polydopamine-Coated Composite Membranes (폴리도파민/미세다공성 복합막의 기체투과특성)

  • Kim, Hyo Won;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 피로파괴거동에 관한 연구)

  • Jang, Jeong-Won;Sohn, Se-Won;Lee, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.13-18
    • /
    • 1999
  • 섬유강화금속적층재(Fiber Reinforced Metal Laminates. FRMLs)는 고강도금속과 섬유강화복합재료(Fiber Reinforced Composite Materials)를 적층한 새로운 종류의 하이브리드 재료이다. 국산 아라미드 섬유인 헤라크론(Heracron, 코오롱)과 국내 복합재료 제작기술(한국화이바)을 사용하여 섬유강화금속적층재를 제작하고, 이를 HERALL(Heracron Reinforced Aluminum Laminate)이라 명명하였다. HERALL(Heracron Reinforced Aluminum Laminate)의 피로균열성장특성 및 피로균열진전 방해기구를 ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) 및 Al 2024-T3과 비교해석하였다. HERALL과 ARALL은 균열진전을 저지하는 아라미드 섬유로 인해 뛰어난 피로균열성장특성 및 피로저항성을 보여주었다. 아라미드 섬유의 균열브리드징으로 인한 $K_{max}$의 감소량과 Al 2024-T3의 균열닫힘으로 인한 $K_{max}$의 증가량을 구할 수 있는 응력-COD법을 사용하여 실제로 균열성장에 영향을 준 유효응력확대계수범위를 측정하였다. 균열선단으로부터 균열을 가공하면서 COD 변화량을 측정하여 균열브리징 영역을 구하였다.

  • PDF

Design of the Staircase Fatigue Tests for the Random Fatigue Limit Model (확률적 피로한도모형하에서 계단형 피로시험의 설계)

  • Seo, Sun-Keun;Park, Jung-Eun;Cho, You-Hee;Song, Suh-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.3
    • /
    • pp.107-117
    • /
    • 2007
  • The fatigue has been considered the most failure mode of metal, ceramic, and composite materials. In this paper, numerical experiments to asses the usefulness of two Dixon's methods(small and large samples) and 14 S-N methods on assumptions of lognormal fatigue limit distribution under RFL(Random Fatigue Limit) model are conducted for staircase(or up-and-down) test and compared by MSE(Mean Squared Error) and bias for estimates of mean log-fatigue limit. Also, guidelines for staircase test plans to choose initial stress level and step size are recommended from numerical experiments including sensitivity analyses. In addition, the parametric bootstrap method to construct a confidence interval for the mean of log-fatigue limit by the percentile method using a transition probability matrix of Markov chain is presented and illustrated with an example.

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

Synthesis of Dense $WSi_2\;and\;WSi_2-xvol.%SiC$ composites by High- Frequency Induction Combustion and Its Mechanical Properties

  • Oh Dong-Young;Kim Hwan-Cheol;Yoon Jin-Kook;Shon In-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.94-95
    • /
    • 2004
  • Using the high-frequency induction heated combustion method, the simultaneous synthesis and densification of $WSi_2-xvol.%SiC$ (x=0, 10, 20, 30) composites was accomplished using elemental powders of W, Si and C. A complete synthesis and densification of the materials was achieved in one step within a duration of 2 min. The relative density of the composite was up to 97% for the applied pressure of 60MPa and the induced current. The average grain size of $WSi_2$ are 6.9, 6.1, and $5.0{\mu}m$, respectively. The hardness and the fracture toughness increases with increasing SiC content. The maximum values for the hardness and fracture toughness are $1840kg/mm^2\;and\;5.1MPa{\cdot}m^{1/2}\;at\;WSi_2-30vol.%SiC$.

  • PDF

Economical assessment and selection of corrosion protections for marine steel piles (해상 강관말뚝 활용을 위한 방식기법 선정 및 경제성 검토)

  • Lee, Ju-Hyung;Lee, Jong-Ku;Park, Jae-Hyun;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.551-560
    • /
    • 2009
  • Introduced was a new anti-corrosive method with improved ease of construction, economy, and durability that could be applicable for steel-composite drilled shaft. The feasibility and economy of sea-water-resistant steel was evaluated under the assumption that it was to substitute carbon steel for steel casing of drilled shaft foundation as a load carrying structural member not just as a sacrifice casing, and that anti-corrosive protection measures as required by the domestic standards was applied. Sea-water-resistant steel was found to cost 30% to 55% more, depending on pile diameter and the type of applied anti-corrosive measures, than carbon steel for the service life time of 70 years: 50% to 90% more for 100 years of service life.

  • PDF

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

Electrochemical Random Signal Analysis during Localized Corrosion of Anodized 1100 Aluminum Alloy in Chloride Environments

  • Sakairi, M.;Shimoyama, Y.;Nagasawa, D.
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.168-172
    • /
    • 2008
  • A new type of electrochemical random signal (electrochemical noise) analysis technique was applied to localized corrosion of anodic oxide film formed 1100 aluminum alloy in $0.5kmol/m^3$ $H_3BO_4/0.05kmol/m^3$ $Na_2B_4O_7$ with $0.01kmol/m^3$ NaCl. The effect of anodic oxide film structure, barrier type, porous type, and composite type on galvanic corrosion resistance was also examined. Before localized corrosion started, incubation period for pitting corrosion, both current and potential slightly change as initial value with time. The incubation period of porous type anodic oxide specimens are longer than that of barrier type anodic oxide specimens. While pitting corrosion, the current and potential were changed with fluctuations and the potential and the current fluctuations show a good correlation. The records of the current and potential were processed by calculating the power spectrum density (PSD) by the Fast Fourier Transform (FFT) method. The potential and current PSD decrease with increasing frequency, and the slopes are steeper than or equal to minus one (-1). This technique allows observation of electrochemical impedance changes during localized corrosion.