• 제목/요약/키워드: Metal catalysis

검색결과 126건 처리시간 0.024초

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

Alkali Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Benzoate with Alkali Metal Ethoxides in Anhydrous Ethanol: Unusually High Na+ Ion Selectivity

  • Um, Ik-Hwan;Lee, Seung-Eun;Hong, Yeon-Ju;Park, Jee-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.117-121
    • /
    • 2008
  • Pseudo-first-order rate constants (kobsd) have been measured spectrophotometrically for nucleophilic substitution reactions of 5-nitro-8-quinolyl benzoate (5) with alkali metal ethoxides, EtO?M+ (M+ = Li+, Na+ and K+) in anhydrous ethanol (EtOH) at 25.0 0.1 C. The plots of kobsd vs. [EtO?M+] exhibit upward curvatures, while the corresponding plots for the reactions of 5 with EtO?Na+ and EtO?K+ in the presence of complexing agents, 15-crown-5-ether and 18-crown-6-ether are linear with rate retardation. The reactions of 5 with EtO?Na+ and EtO?Li+ result in significant rate enhancements on additions of Na+ClO4, indicating that the M+ ions behave as a catalyst. The dissociated EtO and ion-paired EtOM+ have been proposed to react with 5. The second-order rate constants for the reactions with EtO (kEtO) and EtOM+ (kEtOM+) have been calculated from ion-pairing treatments. The kEtO and kEtOM+ values decrease in the order kEtONa+ > kEtOK+ > kEtOLi+ > kEtO, indicating that ion-paired EtOM+ species are more reactive than the dissociated EtO ion, and Na+ ion exhibits the largest catalytic effect. The M+ ions in this study form stronger complex with the transition state than with the ground state. Coordination of the M+ ions with the O and N atoms in the leaving group of 5 has been suggested to be responsible for the catalytic effect shown by the alkali metal ions in this study.

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol

  • Kim, Min-Young;Ha, Gyu Ho;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2438-2442
    • /
    • 2014
  • A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.

Purification and refolding of the recombinant subunit B protein of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin

  • Jeon, Yong-Seon;Seo, Sung-Chan;Kwon, Jin-Hee;Ko, Sun-Young;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.343-354
    • /
    • 2008
  • Purpose: Aggregatibacter actinomycetemcomitans is associated with localized aggressive periodontitis. It produces cytolethal distending toxin (CDT), which induces cell cycle arrest in the G2/M phase. The CDT holotoxin is composed of CdtA, CdtB, and CdtC. CdtB has structural homology to human DNase I and is an active component of the CDT complex acting as a DNase. In particular, the pattern homology seen in the CdtB subunit has been associated with specific DNase I residues involved in enzyme catalysis, DNA binding, and metal ion binding. So, to study the functions and regulation of recombinant CdtB, we made up a quantity of functional recombinant CdtB and tested it in relation to the metal ion effect. Materials and Methods: We constructed the pET28a-cdtB plasmid from A. actinomycetemcomitans Y4 by genomic DNA PCR and expressed it in the BL21 (DE3) Escherichia coli system. We obtained the functional recombinant CdtB by the refolding system using the dialysis method and then analyzed the DNase activity and investigated the metal ion effect from plasmid digestion. Results: The recombinant CdtB subunit was expressed as the inclusion bodies. We were able to obtain functional recombinant CdtB subunit using refolding system. We confirmed that our refolded recombinant CdtB had DNase activity and was influenced by the metal ions $Mg^{2+}$ and $Ca^{2+}$. Conclusion: We suggest that the factors influencing recombinant CdtB may contribute to CDT associated diseases, such as periodontitis, endocarditic, meningitis, and osteomyelitis.

Taurodeoxycholate에 의한 뇌 포스포리파제 D의 용해: 몇 금속이온의 활성화 효과 (Solubilization of Brain Phospholipase D by Taurodeoxycholate: Activational Effect of Some Matal Ions)

  • 최석우;최명언
    • 대한화학회지
    • /
    • 제41권12호
    • /
    • pp.672-676
    • /
    • 1997
  • 쥐의 미크로좀 포스포리파제 D(PLD)를 센 이온세기 상태에서 0.2% taurodeoxycholate를 사용하여 용해시켰다. 포스포리파제 D의 활성은 기질로 방사성 동위원소로 표지 된 dipalmitoylphophatidylcholine을 사용하여 생성된 phosphatidic acid(PA)를 측정하여 결정하였다. 용해된 PLD의 초적 pH와 온도는 각각 6.5와 30$^{\circ}C$로서 용해되기 전 미크로좀 상태의 PLD와 비슷하였다. 올레산의 활성화 효과는 4 mM 농도에서 관찰되었다. PLD 활성도에 미치는 금속이온 영향을 조사한 결과 $Mg^{2+},\; Ca^{2+},\; Sr^{2+}, \;Ba^{2+}$와 같은 알칼리 토금속은 모두 PA 생성을 촉진시킨 반면, $Cu^{2+},\; Cd^{2+},\; Al^{3+},\; Ni^{2+},\; V^{5+}$는 억제하였다.

  • PDF

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

알칼라인 하이드라진 연료전지 운전 안정성을 위한 전극 구조 (Effective Electrode Structure for the Stability of Alkaline Hydrazine Fuel Cells)

  • 엄성현;홍수직;이재영
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.652-658
    • /
    • 2019
  • 하이드라진 직접 액체 연료전지는 이산화탄소를 배출하지 않으며, 높은 에너지 밀도를 가지고, 귀금속 촉매를 사용하지 않고도 높은 촉매 활성을 보이는 장점으로 유망한 연료전지로써 활발히 연구가 진행되어 왔다. 하지만, 고안전성 연료전지 운전 성능을 위해서는 전극촉매를 비롯한 핵심소재 개발 및 성능 연구를 토대로 연료의 물질전달 특성을 비롯한 하이드라진 연료전지 내에서 진행되고 있는 작동 프로세스를 충분히 이해할 필요성이 있다. 본 논문에서는 최근의 직접 하이드라진 연료전지 연구결과 중에 가격 경쟁력을 확보한 전극촉매 및 연료 확산, 물 관리, 기체 발생 측면에서 전극 구조 개발 동향을 소개하며 향후 개발 방향에 대해서 고찰하고자 한다.

Zundel- and Eigen-like Surface Hydrated Protons on Pt(111)

  • Kim, Youngsoon;Park, Youngwook;Shin, Sunghwan;Kang, Heon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.167.1-167.1
    • /
    • 2016
  • The interaction between adsorbed water and hydrogen on metallic surfaces is important for fundamental understanding of heterogeneous catalysis and electrode surface reactions in acidic environment. Here, we explore a long-standing question of whether hydronium ion can exist or not on a Pt surface coadsorbed with atomic hydrogen and water. Studies based on mass spectrometry and infrared spectroscopy show clear evidence that hydrogen atoms are converted into hydrated protons on a Pt(111) surface. The preferential structures of hydrated protons are identified as multiply hydrated $H_5O_2{^+}$ and $H_7O_3{^+}$ species rather than as hydronium ions. The multiply hydrated protons may be regarded as two dimensional zundel ($H_5O_2{^+}$) and Eigen cation ($H_7O_3{^+}$) in water-metal interface. These surface-bound hydrated protons may be key surface intermediates of the electrochemical interconversion between adsorbed hydrogen atoms and solvated protons.

  • PDF

Pseudomonas putida에서 부분정제한 Guanosine Triphosphate Cyclohydrolase 의 특성에 관한 연구 (Partial purification and some properties of Guanosine Triphosphate Cyclohydrolase from Pseudomonas putida : GTP cyclohydrolase from pseudomonas)

  • 김완기;임정빈
    • 미생물학회지
    • /
    • 제20권4호
    • /
    • pp.201-209
    • /
    • 1982
  • An enzyme, named GTP cyclohydorlase, that catalizes the hydrolytic removal of carbon No.S of GTP has been partially purified from extracts of Pseudomonas putida (IAM 1506). The enzyme exists in two molecuar weight forms : a high molecular weight form (150,000) and a low molecular weight from (40,000). The high molecular weight form has been purified 25-fold. Some of the properties of the enzyme are as follows : It functions optimally at pH8.0, and at $52^{\circ}C$. The Km value for GTP is $20{\mu}M$. Divalent cations $(Cd^{2+}\;and\;Hg^{2+})$ 2+/) at a concentration of 5mM inhibit completely the enzyme activity. No metal ion including $Mg^{2+}$ is needed for the catalysis. The enzyme is heat labile ; its half at $57^{\circ}C$ is 1.5 min. Of a number of nucleotides tested, only GDP was used to any extent as substrbte in place of GTP. One of the products of the enzyme is determined to be a dihydro-neopterin compound.

  • PDF

Processing Methods for the Preparation of Porous Ceramics

  • Ahmad, Rizwan;Ha, Jang-Hoon;Song, In-Hyuck
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.389-398
    • /
    • 2014
  • Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.