• Title/Summary/Keyword: Metal catalysis

Search Result 126, Processing Time 0.024 seconds

K+ Ion Catalysis in Nucleophilic Displacement Reaction of Y-Substituted-Phenyl Picolinates with Potassium Ethoxide: Effect of Substituent Y on Reactivity and Transition State Structure

  • Im, Hyun-Ju;Lee, Jieun;Kim, Mi-Yeon;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1749-1753
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the nucleophilic substitution reaction of Y-substituted-phenyl picolinates (7a-f) with potassium ethoxide (EtOK) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOK] curves upward while the plot of $k_{obsd}/[EtO^-]_{eq}$ vs. $[EtO^-]_{eq}$ is linear with a positive intercept in all cases. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOK}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ ion and ion-paired EtOK, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. The ${\sigma}^{\circ}$ constants result in a much better Hammett correlation than ${\sigma}^-$ constants, indicating that the reaction proceeds through a stepwise mechanism in which departure of the leaving group occurs after the rate-determining step (RDS). $K^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through formation of a cyclic transition state (TS). The catalytic effect decreases as the substituent Y becomes a stronger electron-withdrawing group (EWG). Development of a positive charge on the N atom of the picolinyl moiety through resonance interactions is responsible for the decreasing $K^+$ ion catalysis.

$SO_3$ Decomposition Catalysis in SI Cycle to to Produce Hydrogen (SI 원자력 수소생산을 위한 $SO_3$ 분해반응촉매에 관한 연구)

  • Kim, Tae-Ho;Shin, Chae-Ho;Joo, Oh-Shim;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • Fe, Ni and Co, typical active components, were dispersed on $Al_2O_3$ and $TiO_2$ for $SO_3$ decomposition. $SO_3$ decomposition was conducted at the temperature ranges from $750^{\circ}C$ to $950^{\circ}C$ using the prepared catalysts. Alumina based catalysts showed the surface areas higher than Titania based catalysts, which resulted from spinel structure formation of alumina based catalysts. Catalytic $SO_3$ decomposition reaction rates were in the order of Fe>Co${\gg}$Ni. The metal sulfate decomposition temperature were in the order of Ni>Co>Fe from TGA/DTA analysis of metal sulfate. During $SO_3$ decomposition, metal sulfate can form on the catalysts. $SO_2$ and $O_2$ can be produced from the decomposition of metal sulfate. In that point of view, the less is the metal sulfate deomposition temperature, the higher can be the $SO_3$ decomposition activity of the metal component. Therefore, it can be concluded that metal component with the low metal sulfate decomposition temperature is the pre-requisite condition of the catalysts for $SO_3$ decomposition reaction.

Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol

  • Lee, Jae-In;Kang, Ji-Sun;Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3543-3548
    • /
    • 2010
  • A kinetic study on nucleophilic displacement reactions of 2-pyridyl X-substituted benzoates 1a-e with potassium ethoxide (EtOK) in anhydrous ethanol is reported. Plots of pseudo-first-order rate constants ($k_{obsd}$) vs. $[EtOK]_o$ exhibit upward curvature. The $k_{obsd}$ value at a fixed $[EtOK]_o$ decreases steeply upon addition of 18-crown-6-ether (18C6) to the reaction mixture up to [18C6]/$[EtOK]_o$ = 1 and then remains nearly constant thereafter. In contrast, $k_{obsd}$ increases sharply upon addition of LiSCN or KSCN. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ has revealed that ion-paired EtOK is more reactive than dissociated $EtO^-$, indicating that $K^+$ ion acts as a Lewis acid catalyst. Hammett plots for the reactions of 1a-e with dissociated $EtO^-$ and ion-paired EtOK result in excellent linear correlation with $\rho$ values of 3.01 and 2.67, respectively. The $k_{EtOK}/k_{EtO^-}$ ratio increases as the substituent X in the benzoyl moiety becomes a stronger electron-donating group. $K^+$ ion has been concluded to catalyze the current reaction by stabilizing the transition state through formation of a 6-membered cyclic complex.

Site-Directed Mutagenesis Studies with Restriction Endonuclease EcoRV to Identify the Role of Ile91 in Recognition and Catalysis

  • Moon, Byung-Jo;Vipond, I. Barry;Halford, Stephen E.
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.99-104
    • /
    • 1996
  • Site-directed substitutions were made to change the Ile91 of restriction endonuclease EcoRV to either Val, Ala or Gly to identify the role of Ile91 in recognition and catalysis, since substitution of Ile91 with Leu afforded dramatic effects on the activity and properties of restriction endonuclease EcoRV. These changes alter the size of the hydrophobic side chain at position 91 and thus might have revealed the reason for the altered phenotype of Ile91Leu. However, the properties of Ile91Val and Ile91Ala mutants were much like wild type EcoRV, in both activity and metal ion preference. Ile91Gly had very little activity with either $Mg^{2+}$ or $Mn^{2+}$ as cofactors. To try to understand the unusual $Mn^{2+}$ profile of the Ile91Leu mutant, two double mutants, Ile91Leu;Asp90Asn and Ile91Leu;Glu45Met were created. Both double mutants were seriously disabled by the second amino acid change. Ile91Leu;Glu45Met had some residual activity in the $Mn^{2+}$ reaction buffer, whereas the Ile91Leu;Asp90Asn displayed no detectable activity.

  • PDF

Recent advance on the borylation of carbon-oxygen bonds in aromatic compounds

  • Jeon, Seungwon;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • Organoboron compounds and their derivatives are synthetically versatile building blocks because they are readily available, stable, and highly useful for potential organic transformations. Arylboronic esters are of particular interest due to their well-established synthetic methods: transition metal catalyzed borylations of aryl halides. However, the use of aryl halides as an electrophile has one serious disadvantage: formation of toxic halogenated byproducts. A promising alternative substrate to aryl halides would be phenol derivatives such as aryl ethers, esters, carbamates and sulfonates. The phenol derivatives involve several advantages: their abundance, relatively low toxicity and versatile synthetic application. However, utilization of the aryl methyl ether, which is one of the simplest phenol derivatives, remains as a challenge, as C-OMe bond activation requires high activation energy and methoxides are not good leaving groups. Nevertheless, there have been a significant recent progress on ipso-borylation of aryl methyl ether including Martin's nickel catalysis. Here, we review the current advance on the borylation of carbon-oxygen bonds of unactivated C-OMe bond in aromatic compounds.

Multi-Nuclear NMR Investigation of Nickel(II), Palladium(II), Platinum(II) and Ruthenium(II) Complexes of an Asymmetrical Ditertiary Phosphine

  • Raj, Joe Gerald Jesu;Pathak, Devendra Deo;Kapoor, Pramesh N.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.726-730
    • /
    • 2013
  • Complexes synthesized by reacting alkyl and aryl phosphines with different transition metals are of great interest due to their catalytic properties. Many of the phosphine complexes are soluble in polar solvents as a result they find applications in homogeneous catalysis. In our present work we report, four transition metal complexes of Ni(II), Pd(II), Pt(II) and Ru(II) with an asymmetrical ditertiaryphosphine ligand. The synthesized ligand bears a less electronegative substituent such as methyl group on the aromatic nucleus hence makes it a strong ${\sigma}$-donor to form stable complexes and thus could effectively used in catalytic reactions. The complexes have been completely characterized by elemental analyses, FTIR, $^1HNMR$, $^{31}PNMR$ and FAB Mass Spectrometry methods. Based on the spectroscopic evidences it has been confirmed that Ni(II), Pd(II) and Pt(II) complexes with the ditertiaryphosphine ligand showed cis whereas the Ru(II) complex showed trans geometry in their molecular structure.

Immobile Artificial Metalloproteases

  • Kim, Myoung-Soon;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1911-1920
    • /
    • 2005
  • Effective artificial metalloproteases have been designed by using cross-linked polystyrene as the backbone. Artificial active sites comprising Cu(II) complexes as the catalytic site and other metal centers or organic functionalities as binding sites were synthesized. The activity of Cu(II) centers for peptide hydrolysis was greatly enhanced on attachment to polystyrene. By placing binding sites in proximity to the catalytic centers, the ability to hydrolyze a variety of protein substrates at selected cleavage sites was improved. Thus far, the most advanced immobile artificial proteases have been obtained by attaching the aldehyde group in proximity to the Cu(II) complex of cyclen.

Kinetics of the Formation of Metalloporphyrins and the Catalytic Effect of Lead Ions and Hydrogen Ions

  • Qi, Yong;Pan, Ji Gang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3313-3318
    • /
    • 2014
  • The reaction mechanism of Lead ions catalyzing complexation reactions between TIPP and metal ions was investigated by researching the kinetics of the formation of metalloporphyrins by UV/Vis-spectra, and verified by exploring the formation of metalloporphyrins catalyzed by acetic acid. Kinetics studies suggested that the fluctuations of reaction rate indicated the formation of metalloporphyrin was step-wise, including the pre-equilibrium step (the coordination of the pyrrolenine nitrogens to $Mn^+$) and the rate-controlling step (the deprotonation of the pyrrole proton). In the pre-equalization step, a sitting-atop (SAT) structure formed first with the complexation between larger radius of $Pb^{2+}$ and TIPP, changed the activation, then $Pb^{2+}$ left with the smaller radius of metal ions attacking from the back of the porphyrin ring center. In the rate-controlling step, two pyrrole protons dissociated to restore a stable structure. This was verified by adding acetic acid at different reaction times.

Development of Gold Phosphorus Supported Carbon Nanocomposites

  • Mayani, Vishal J.;Mayani, Suranjana V.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.401-406
    • /
    • 2014
  • Metal-containing carbon nanocomposites have shown significance promise in the area of energy storage, heterogeneous catalysis and material science because of their morphology and combined properties. Phosphorus-doped carbon nanocomposites with gold nanoparticles were developed by applying a simple impregnation method and metal deposition technique. Gold-phosphorus supported carbon nanocomposites with two sized (25 and 170 nm) were prepared from economical petroleum pitch residue as the carbon source using an advanced silica template method. These nanocomposites will lead to the novel applications in the field of material science with the combined properties of gold, phosphorus and carbon. The newly prepared gold phosphorus supported carbon nanocomposites were fully characterized using a range of different physico-chemical techniques.

Voltammetric Studies of Guanine and Its Derivatives by (TEX)$Ru(bpy)^{2+/3+}$(/TEX) Mediator on Indium Tin Oxide Electrode

  • Kim, Jin Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.709-711
    • /
    • 2000
  • Oxidizing metal complex mediates the electrochemical oxidation of guanine nucleotides. This catalysis results in an enhancement in cyclic voltammograms that yield the rate constant for the oxidation of guanine by the metal complex via digital simulation. The rate constant of oxidation of guanine by Ru(bpy)3(3+) is 6.4 x 10(5)M(-1)s(-l). The rate constant and the enhanced current depend on the number of phosphate groups on the sugar of nucleotidc. Also the modified guanine bases show different oxidation rate constants following the trend guanine-5'- monophosphatc (GMP) > 8-bromo-guanine-5'-monophosphate (8-Br-GMP) > xanthosine -5'-monophosphate (XMP) > inosinc-5'-monophosphate (IMP). The guanine bases derivatized differently are all distinguishable from one another, providing a basis for studying electrochemistry of DNA and RNA and developing electrochemical biosensors.