• Title/Summary/Keyword: Metal carbide

Search Result 266, Processing Time 0.029 seconds

The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites (SiC 입자 보강 Al 복합재료의 피로균열 진전거동)

  • 권재도;문윤배;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.

NH3 Decomposition Reaction for Hydrogen Formation Using Vanadium Carbide Catalysts (바나듐 탄화물 촉매를 이용한 수소생성용 암모니아 분해반응)

  • KIM, JUNG-SU;CHOI, SEONG-SHIN;CHOI, JEONG-GIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The synthesis and catalytic activities over vanadium carbides were examined for ammonia decomposition reaction to produce the hydrogen. In particular, the comparison of vanadium nitrides were made on the ammonia decomposition reaction. The experimental data exhibited that BET surface areas ranged from 5.2 ㎡/g to 25.6 ㎡/g and oxygen uptake values varied from 3.8 μmol/g to 31.3 μmol/g. It is general that vanadium carbides (VC) were observed to be superior to vanadium nitrides for ammonia decomposition reaction. The primary reason for these differences were thought to be related to the extent of electronegativity between these materials. Most of vanadium carbide crystallites were exceeded by Pt/C crystallite. We assumed that the activities for vanadium carbide crystallites (VC) were comparable to or even higher than that determined for the Pt/C crystallite.

A Study on the Direct Synthesis of TaC by Cast-bonding (주조접합법에 의한 TaC 직접합성에 관한 연구)

  • Park, Heung-Il;Lee, Sung-Youl
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.371-378
    • /
    • 1997
  • The study for direct synthesis of TaC carbide which was a reaction product of tantalum and carbon in the cast iron was performed. Cast iron which has hypo-eutectic composition was cast bonded in the metal mold with tantalum thin sheet of thickness of $100{\mu}m$. The contents of carbon and silicon of cast iron matrix was controlled to have constant carbon equivalent of 3.6. The chracteristics of microstructure and the formation mechanism of TaC carbide in the interfacial reaction layer in the cast iron/tantalum thin sheet heat treated isothermally at $950^{\circ}C$ for various time were examined. TaC carbide reaction layer was grown to the dendritic morphology in the cast iron/tantalum thin sheet interface by the isothermal heat treatment. The composition of TaC carbide was 48.5 at.% $Ti{\sim}48.6$ at.% C-2.8 at.% Fe. The hardness of reaction layer was MHV $1100{\sim}1200$. The thickness of reaction layer linearly increased with increasing the total content of carbon in the cast iron matrix and isothermal heat treating time. The growth constant for TaC reaction layer was proportional to the log[C] of the matrix. The formation mechanism of TaC reaction layer at the interface of cast iron/tantalum thin sheet was proved to be the interfacial reaction.

  • PDF

A Study on Microstructure and Mechanical Properties of TiC/Steel Composites Fabricated by Powder Metallurgy Process (분말야금공정으로 제조된 TiC/steel 금속복합재료의 미세조직 및 기계적 물성 연구)

  • Lee, Jihye;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Daeha;Kim, Junghwan
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.311-316
    • /
    • 2021
  • In this study, TiC/steel metal matrix composites were fabricated by powder metallurgy process using Fealloy powders with 3 wt.% Cr and 10 wt.% Cr, respectively, as matrix material. Subsequently, the composite samples were heat treated by the annealing and quenching-tempering(Q-T), respectively, to understand the effect of heat treatment on the mechanical properties of the composites. The correlation between microstructure and structural strength depending on the chromium content and the heat treatment conditions was studied through tensile, compressive, and transverse rupture test and microstructural analysis. In the case of TiC/steel composite containing 10 wt.% Cr, the tensile strength and transverse rupture strength at room temperature were significantly lowered by the influence of coarse chromium carbide formed at the TiC/steel interface. On the other hand, both TiC/steel composites containing 3 wt.% Cr and 10 wt.% Cr showed much higher compressive strength of about 4 GP after quenching-tempering compared to the annealed specimens regardless of the presence of the chromium carbide.

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Influence of Electrical Conductivity of Dielectric on Machinability of W-EDM (방전액의 전도율이 와이어방전가공성에 미치는 영향)

  • Kim, Chang-Ho;Hur, Kwan-Do;Kwon, Taek-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.64-70
    • /
    • 2001
  • This work deals with the electrical conductivity of dielectric and cobalt percentage on output parameters such as metal removal rate and surface roughness value of sintered carbides cut by wire-electrical discharge machining (W-EDM). To obtain a precise workpiece with good quality, some extra repetitive finish cuts along the rough cutting contour are necessary. Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a higher metal removal rate as the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. To obtain a good surface equality without cracks, 4 finish-cuts were necessary by reducing the electrical energy and the offset value.

  • PDF

Trend on the Recycling Technologies for the used Tungsten Carbide(WC) by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 텅스텐카바이드(WC) 재활용(再活用) 기술(技術) 동향(動向))

  • Jeong, Jin-Ki;Lee, Jae-Chun;Park, Sang-Woo;Kang, Kyung-Seok
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.82-92
    • /
    • 2012
  • There are several kinds of tungsten carbide(WC) such as light bulbs, metal cutting tools, drill bits, mining tools, military ordinance, high speed tool steels, chemicals/catalysts, wear resistance parts, jet engine turbine blades, etc.. These days it has been widely studied for the recycling technologies of the used tungsten carbide(WC) from view points of economy and efficiency. In this paper, open/registered patents of US, JP, EP, and KR and SCI Journal related to recycling technologies of the used Tungsten Carbide(WC) between 1969-2011 were reviewed. Patents and papers were collected using key-words searching and filtered by filtering criteria. The trends of the patents and papers was analyzed by the years, countries, companies, and technologies.

Material Degradation of Ancient Iron Pot by Repeated Heating for One Thousand Years (고대 철확(철솥)의 1천년 반복 가열 및 열화현상)

  • Go, Hyeong;Han, Min Su;Choe, Byung Hak;Min, Doo Sik;Shim, Yun Im;Jeong, Hyo Tae;Cho, Nam Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.324-330
    • /
    • 2012
  • The microstructural changes of three pieces from an ancient iron pot were studied in order to identify present the material degradation due to repeated heating for one-thousand years. The microstructures of the pieces were divided into the areas of ferrite/graphite, ferrite/pearlite, and corroded oxidation. The area of ferrite/graphite was undergone by severe Galvanic corrosion, but that of ferrite/pearlite was not even during a thousand years' using. The shape of the graphites was coexisted with types of A, B, and C of as modern graphite classification. In the ferrite/pearlite area, abnormal acicula precipitates with a high aspect ratio of $0.2{\mu}m$ thickness and several hundreds ${\mu}m$ length were presented. They might be a kind of carbide in the ferrite matrix with its special precipitate plane.

Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies (냉간금형용 합금공구강 분말 및 적층조형체의 미세조직)

  • Kang, Jun-Yun;Yun, Jaecheol;Kim, Hoyoung;Kim, Byunghwan;Choe, Jungho;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.