• 제목/요약/키워드: Metal carbide

검색결과 266건 처리시간 0.025초

연속 전해드레싱용 래핑숫돌 개발 및 성능평가 (A Study on the Development of In-Processor Dressing Lapping Wheel and its Evaluation of Machining Characteristics)

  • 최재영;이은상;송지복
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.132-137
    • /
    • 2001
  • Application of ceramics, carbide, ferrite has grown considerably due to their mechanical properties such as high degree hardness, chemical stability, super wear resistance. Despite these characters, the use of advanced material has not increased because of poor machinability. The application of metal bonded wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, to solve this problem, the technology of in-process electrolytic dressing is developed. This method need wheel for electrolytic dressing, power supply and electrolyte. The aim of this study is development of CIB-D wheel for electrolytic and its evaluation of electrolytic characteristics, and achieve ultra-precision lapping of carbide, optic glass.

  • PDF

고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성 (Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process)

  • 강연지;함기수;김형준;윤상훈;이기안
    • 한국분말재료학회지
    • /
    • 제25권5호
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

실리콘 및 탄소 복합 열환원 반응을 이용한 페로실리크롬 합금철의 제조 (Production of Fe-Si-Cr Ferro Alloy by Using Mixed Silicothermic and Carbothermic Reduction)

  • 김종호;정은진;이고기;정우광;유선준;장영철
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.263-269
    • /
    • 2017
  • Fe-Si-Cr ferroalloy is predominantly produced by carbothermic reduction. In this study, silicothermic and carbothermic mixed reduction of chromite ore to produce Fe-Si-Cr alloy is suggested. As reductants, silicon and silicon carbide are evaluated by thermochemical calculations, which prove that silicon carbide can be applied as a raw material. Considering the critical temperature of the change from the carbide to the metallic form of chromium, thereduction experiments were carried out. In these high temperature reactions, silicon and silicon carbide act as effective reductants to produce Fe-Si-Cr ferroalloy. However, at temperatures lower than the critical temperature, silicon carbide shows a slow reaction rate for reducing chromite ore. For the proper implementation of a commercial process that uses silicon carbide reductants, the operation temperature should be kept above the critical temperature. Using equilibrium calculations for chromite ore reduction with silicon and silicon carbide, the compositions of reacted metal and slag were successfully predicted. Therefore, the mass balance of the silicothermic and carbothermic mixed reduction of chromite ore can be proposed based on the calculations and the experimental results.

수소연료전지용 탄탈륨 탄화물에 대한 암모니아 분해반응 (Ammonia Decomposition Over Tantalum Carbides of Hydrogen Fuel Cell)

  • 최정길
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2013
  • Tantalum carbide crystallites which is to be used for $H_2$ fuel cell has been synthesized via a temperature-programmed reduction of $Ta_2O_5$ with pure $CH_4$. The resultant Ta carbide crystallites prepared using two different heating rates and space velocity exhibit the different surface areas. The $O_2$ uptake has a linear relation with surface area, corresponding to an oxygen capacity of $1.36{\times}10^{13}\;O\;cm^{-2}$. Tantalum carbide crystallites are very active for hydrogen production form ammonia decomposition reaction. Tantalum carbides are as much as two orders of magnitude more active than Pt/C catalyst (Engelhard). The highest activity has been observed at a ratio of $C_1/Ta^{{\delta}+}=0.85$, suggesting the presence of electron transfer between metals and carbon in metal carbides.

Friction Studies of Coated and Uncoated Cemented Carbide in Controlled Environment

  • Ovaert, T.C.;Ramachandra, S.;McQuay, G.N.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.66-70
    • /
    • 1995
  • In this investigation, a controlled-environment tribological test device has been used to study the friction coefficients of several grades of commercially-available coated and uncoated cemented carbide cutting tools in a dry air environment at different environmental chamber pressures. Tests were run in the block-on-ring configuration. The results suggest that the friction coefficient is sensitive to the level of air present, with a noticeable rise in friction coefficient with decreasing pressure or increasing vacuum level. The uncoated cemented carbide sufaces resulted in the highest friction values, whereas the coated grades yielded somewhat lower values even after the coating was removed. The results suggest the importance of friction control in the design of coatings for metal removal processes.

Silicon Carbide 쇼트기 정류기의 모델링 (Modeling the Silicon Carbide Schottky Rectifiers)

  • 이유상;최연익;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권2호
    • /
    • pp.78-81
    • /
    • 2000
  • The closed-form analytic solutions for the breakdown voltage of 6H-SiC RTD(silicon carbide reachthrough diode) having metal$-n^--n^+$ Schottky structure or $p^+-n^--n^+$, are successfully derived by solving impact ionization integral using an effective ionization coefficient. For the lightly doped n- epitaxial layer, the breakdown voltage of SiC RTD are nearly constant with the increased doping concentration while the breakdown voltages decrease for the heavily doped epitaxial layer.

  • PDF

일방향응고 초내열합금에서 MC 탄화물 형상에 관한 연구 (A study on the MC Carbide Morphologies Directionally Solidified Superalloys)

  • 김승언;조창용;김학민
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.57-63
    • /
    • 1990
  • The morphologies of MC carbides (M stands for metal) and creep-rupture properties in directionally solidified Rene 80 having standard and Hf-modified chemistries were studied. It was found that Hf depressed the melting point, $\gamma$- $\gamma$’ eutectic temperature and $\gamma$’ solvus of nickel-base superalloy Rene 80, but did not depress MC carbide forming temperature. The morphologies of MC carbides depended upon solidification sequence, which led to blocky type in the early stage and script type in the late stage of solidification. Creep failure occurs through the crack initiation at the transverse components of longitudinal grain boundaries or interdendritic carbides in directionally solidified superalloys. It could be concluded MC carbide morphologies played an important role in creep properties of DS superalloys, that is, Hf additions increased the creep ductilities and lives of Rene 80.

  • PDF

초경 엔드밀에 의한 회주철(GC250)의 고속가공 특성(1) (Machining characteristic of gray cast iron in high speed machining with tungsten carbide endmill)

    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 1995
  • High speed machining one of the most effectiv to improve machining accuracy and product in dies and mould. But a study on this is limited to Alumium, light metal etc. This paper presents machining characteristic of gray cast iron in high speed machining with tungsten carbide endmill. It is suggested to measure sutting force, tool wear, surface roughness, surface shape and select of cptimal cutting condition in the high speed machining of gray cast iron. Performance of high speed machine tool was estimated and the relationship between cutting phenomenon and machinabillity was described.

  • PDF