• Title/Summary/Keyword: Metal bracket

Search Result 81, Processing Time 0.019 seconds

Evaluation of friction of esthetic brackets according to different bracket-wire angulations (심미 브라켓의 종류와 브라켓-호선 각도에 따른 마찰 저항에 대한 연구)

  • Je, Young-Ji;Chang, Minn-Hii;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.37 no.5
    • /
    • pp.341-350
    • /
    • 2007
  • The purpose of this study was to evaluate how the friction that occurs during the sliding movement of the archwire through esthetic brackets is differently affected by bracket materials, slot designs, and tip angulations of the archwire. Methods: Eight types of brackets with 0.018 inch slots (composite: Brillant (BR); composite with metal slot: Spirit MB (SP); ceramic: Inspire (IN), Signature (SI), Cristaline V (CR); ceramic with metal slot: Clarity (CL), Luxi II (LU); and metal bracket: Integra (IT)), and placed into groups of 20 brackets in each group, were tested in artificial saliva with 0.018 inch stainless steel wire. The wire tip angulations were given as 0, 4 and 8 degrees. Results: CR group significantly showed the lowest frictional force with all wire tip angulations of 0,4, and 8 degrees. IN significantly showed the highest frictional force (p < 0.001). BR (polyoxymethylene) had significantly less frictional force than SP (polycarbonate) (p < 0.001) and showed no significant difference between metal brackets. Friction was increased as the wire tip angulations were increased, but no notches were observed on any parts of the archwire. Conclusions: According to the results of this study, esthetic brackets are superior or similar to 55 brackets from a frictional point of view.

Change of fracture mode of orthodontic resin bracket wings under water immersion and thermocycling (침수 및 열순환에 따른 레진브라켓 wing의 파절강도 변화)

  • Son, Ji-Hyeong;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.475-481
    • /
    • 2000
  • The purpose of this study was to evaluate the effect of oral environment on the strength of resin bracket wings by comparing fracture mode according to water immersion and thermocycling. Seventy-five resin brackets(Spirit MB, Ormco, California) were divided into three groups and treated for six months as follows; (1) untreated, (2) water immersion in distilled water at $37^{\circ}C$, (3) water immersion in distilled water at $37^{\circ}C$ with total 2,100 times of thermocycling taken 350 times each month. Fracture mode of the wing was tested on universal testing machine. In addition to resin brackets, 25 metal brackets were used as controls. Through the statistical analyses, following results were obtained. 1. Resin bracket wings showed significantly lower fracture strength than metal brackets(p<0.001). 2. Water immersion and water immersion with thermocycling groups showed significantly lower fracture strength than open air condition group(p<0.001). 3. Water immersion with thermocycling group showed significantly lower fracture strength than water immersion group(p<0.001). The above results suggest that the mechanical property of resin bracket wing nay be influenced by oral environment and further research is needed to improve the strength of the wing in the resin bracket.

  • PDF

Variation in adhesion of Streptococcus mutans and Porphyromonas gingivalis in saliva-derived biofilms on raw materials of orthodontic brackets

  • Park, So-Hyun;Kim, Kyungsun;Cho, Soha;Chung, Dong-Hwa;Ahn, Sug-Joon
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.278-286
    • /
    • 2022
  • Objective: To evaluate differences in the adhesion levels of the most common oral pathogens, Streptococcus mutans and Porphyromonas gingivalis, in human saliva-derived microcosm biofilms with respect to time and raw materials of orthodontic brackets. Methods: The samples were classified into three groups of bracket materials: 1) monocrystalline alumina ceramic (CR), 2) stainless steel metal (SS), and 3) polycarbonate plastic (PL), and a hydroxyapatite (HA) group was used to mimic the enamel surface. Saliva was collected from a healthy donor, and saliva-derived biofilms were grown on each sample. A real-time polymerase chain reaction was performed to quantitatively evaluate differences in the attachment levels of total bacteria, S. mutans and P. gingivalis at days 1 and 4. Results: Adhesion of S. mutans and P. gingivalis to CR and HA was higher than the other bracket materials (SS = PL < CR = HA). Total bacteria demonstrated higher adhesion to HA than to bracket materials, but no significant differences in adhesion were observed among the bracket materials (CR = SS = PL < HA). From days 1 to 4, the adhesion of P. gingivalis decreased, while that of S. mutans and total bacteria increased, regardless of material type. Conclusions: The higher adhesion of oral pathogens, such as S. mutans and P. gingivalis to CR suggests that the use of CR brackets possibly facilitates gingival inflammation and enamel decalcification during orthodontic treatment.

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF

ORIGINAL ARTICLE - Adhesion of Streptococcus mutans and Streptococcus sobrinus to different types of self-ligating brackets

  • Yang, Pil-Seung;Yu, Yoon-Jeong;Cha, Jung-Yul;Hwang, Chung-Ju
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.394-406
    • /
    • 2012
  • Objective: The adhesion capabilities of different types of self-ligating brackets were measured with respect to Streptococcus mutans and Streptococcus sobrinus. Methods: Five types of self-ligating brackets (Clippy-C; Mini Clippy; Clarity-SL; Speed; Damon 3) were used for the experiment group and composite resin brackets (Spirit-MB), metal brackets (Victory) and polycrystalline alumina brackets (Clarity) were used for the control group. In order to assess adhesion of bacteria to the brackets, the brackets were cultured for 3, 6 and 24 hours in media containing bacteria and 20% sucrose. Results: There was no statistic difference in adhesion amount of Streptococcus mutans and Streptococcus sobrinus according to the types of brackets. A total adhesion amount according to bracket type was different. An extended incubation time increased adhesion amount. Observation under scanning electron microscope showed that Streptococcus sobrinus adhered more to Clippy-C and Victory rather than to Clarity-SL. Conclusions: Clarity-SL, a self-ligating esthetic bracket was confirmed to show lower bacterial adhesion to cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus group than other self-ligating brackets or conventional brackets, which suggests that proper use of self-ligating esthetic brackets might even be better in preventing tooth surface decalcification.

Adherence of Salivary Proteins to Various Orthodontic Brackets (다양한 교정용 브라켓 표면에 부착하는 타액단백질에 관한 연구)

  • Ahn, Sug-Joon;Ihm, Jong-An;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.32 no.6 s.95
    • /
    • pp.443-453
    • /
    • 2002
  • The principal aims of this study were to identify the composition of salivary pellicles formed on various orthodontic brackets and to obtain a detailed information about the protein adsorption profiles from whole saliva and two major glandular salivas. Four different types of orthodontic brackets were used. All were upper bicuspid brackets with a $022{\times}028$ slot Roth prescription; stainless steel metal, monocrystalline sapphire, polycrystalline alumina, and plastic brackets. Bracket pelicles were formed by the incubation of orthodontic brackets with whole saliva, submandibular-sublingual saliva, and parotid saliva for 2 hours. The bracket pellicles were extracted and confirmed by employing sodium dodecyl sulfatepolyacrylamide gel electrophoresis, Western transfer methods, and immunodetection. The results showed that low-molecular weight salivary mucin, ${\alpha}-amylase$, secretory IgA (sIgA), acidic proline-rich proteins, and cystatins were attached to all of these brackets regardless of the bracket types. High-molecular weight mucin, which promotes the adhesion of Streptococcus mutans, did not adhere to uy orthodontic brackets. Though the same components were detected in all bracket pellicles, however, the gel profiles showed qualitatively and quantitatively different pellicles, according to the origins of saliva and the bracket types. In particular, the binding of sIgA was more prominent in the pellicles from parotid saliva and the binding of cystatins was prominent in the pellicles from the form plastic brackets. This study indicates that numerous salivary proteins adhere to the orthodontic brackets and these salivary proteins adhere selectively according to bracket types and the types of the saliva.

A comparative study on bond strength and adhesive failure pattern in bracket bonding with self-etching primer (Self-etching Primer를 이용한 교정용 브라켓 부착시 전단결합강도와 파절양상에 관한 비교연구)

  • Kim, You-Kyoung;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.325-332
    • /
    • 2004
  • A self-etching primer that combines the etchant and primer in one chemical compound saves time and should be mote cost-effective to the clinician and patient. The purpose of this study was to evaluate the clinical effectiveness of a self-etching primer by measuring shear bond strengths according to various conditions and observing adhesive failure patterns. For this Investigation, 120 upper and lower premolars extracted for orthodontic purposes were used and randomly divided into six groups of twenty teeth each. Human premolars were embedded in a metal cylinder with orthodontic resin. Metal brackets and ceramic brackets were bonded with XT primer and self-etching primer by means of XT adhesive. Upon curing, plasma arc light and visible light were used. After bonding, the shear bond strength was tested by Instron universal testing machine, and the amount of residual adhesive that remained on the tooth after debonding was measured by stereoscope and assessed with an adhesive remnant index. The results were as fellows: 1. When brackets were bonded, if other conditions remained the same, there was no significant difference in shear bond strength due to the type of primer - either self-etching primer or XT primer. 2. When metal brackets were bonded, there was no significant difference in shear bond strength according to the source of light - plasma arc light or visible light - and type of primer. 3. There was a very significant difference in shear bond strength according to the type of brackets - metal or ceramic brackets. The shear bond strength of ceramic brackets was stronger than metal brackets. 4. When the adhesive failure patterns of metal brackets bonded with self-etching primer were observed by using the adhesive remnant index, the bond failure of the metal bracket occurred more frequently at the bracket-adhesive. The failure of the ceramic bracket, however, occurred more frequently at the enamel-adhesive interface. The adhesive failure patterns of metal brackets bonded with XT primer observed the same patterns. The above results suggest that self-etching primer can be clinically useful for bonding the brackets without fear of a decrease in shear bond strength.

AN EXPERIMENTAL STUDY ON THE CYTOTOXICITY OF RECYCLED BRACKETS (재생방법에 따른 교정용 브라켓의 세포독성에 관한 실험적 연구)

  • Lim, Young-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.23 no.2 s.41
    • /
    • pp.147-163
    • /
    • 1993
  • The purpose of this stuy was to evaluated the cytotoxicity of brackets which were recycled thermally or chemically. New brackets and used brackets which had been in mouth for at least 2years were used as samples and human gingival cell culture and agar overlay technique was used to evaluate the cytotoxicity. From the experiment the following results were obtained : 1. New brackets in the as received state showed mild cytotoxicity. 2. Thermally recycled brackets except the used bracket not electropolished showed moderate cytotoxicity and among them new brackets showed greater cytotoxicity than used ones. 3. Used brackets which were thermally recycled without electropolishing showed mild cytotoxicity. 4. Among thermally recycled brackets, electropolished brackets showed greater cytotoxicity than not electro-polished ones. 5. Chemically recycled brackets showed moderate cytotoxicity, and among them, new brackets appeared to be more cytotoxic than used ones.

  • PDF

Fracture resistance of ceramic brackets to arch wire torsional force (토오크 양에 따른 세라믹 브라켓의 파절 저항성)

  • Han, Jung-Heum;Chang, Minn-Hii;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2007
  • The purpose of this study was to estimate the fracture resistance of commercially available ceramic brackets to torsional force exerted from arch wires and to evaluate the characteristics of bracket fracture. Methods: Lingual root torque was applied to maxillary central incisor brackets with 0.022-inch slots by means of a $022\;{\times}\;028-inch$ stainless steel arch wire. A custom designed apparatus that attached to an Instron was used to test seven types of ceramic brackets (n = 15). The torque value and torque angle at fracture were measured. In order to evaluate the characteristics of failure, fracture sites and the failure patterns of brackets were examined with a Scanning Electron Microscope. Results: Crystal structure and manufacturing process of ceramic brackets had a significant effect on fracture resistance. Monocrystalline alumina (Inspire) brackets showed significantly greater resistance to torsional force than polycrystalline alumina brackets except InVu. There was no significant difference in fracture resistance during arch wire torsional force between ceramic brackets with metal slots and those without metal slots (p > 0.05). All Clarity brackets partially fractured only at the incisal slot base and the others broke at various locations. Conclusion: The fracture resistance of all the ceramic brackets during arch wire torsion appears to be adequate for clinical use.

Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

  • Lee, Ji-Yeon;Ahn, Jaechan;An, Sang In;Park, Jeong-won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2018
  • Objectives: The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods: Fifty zirconia blocks ($15{\times}15{\times}10mm$, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with $50{\mu}m$ $Al_2O_3$ for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at $37^{\circ}C$ storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results: Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions: Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.