• 제목/요약/키워드: Metal binding

검색결과 460건 처리시간 0.023초

Theoretical Investigation of Edge-modified Zigzag Graphene Nanoribbons by Scandium Metal with Pyridine-like Defects: A Potential Hydrogen Storage Material

  • Mananghaya, Michael
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.253-256
    • /
    • 2014
  • Functionalization of zigzag graphene nanoribbon (ZGNR) segment containing 120 C atoms with pyridine (3NV-ZGNR) defects was investigated on the basis of density-functional theory (DFT) calculations, results show that edge-modified ZGNRs by Sc can adsorb multiple hydrogen molecules in a quasi-molecular fashion, thereby can be a potential candidate for hydrogen storage. The stability of Sc functionalization is dictated by a strong binding energy, suggesting a reduction of clustering of metal atoms over the metal-decorated ZGNR.

Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions

  • Yun, Yeoung-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.29-34
    • /
    • 2004
  • Biosorption technology is recognized as an economically feasible alternative for the removal and/or recovery of metal ions from industrial wastewater sources. However, the structure of biosorbents is quite complex when compared with synthetic ion-exchange resins, which makes it difficult to quantify the ion-binding sites. Accordingly, this report describes a well-defined method to characterize the pK values and numbers of biomass functional groups from potentiometric titration data. When the proposed method was applied to Sargassum polycystum biomass as a model biosorbent, it was found that the biomass contained three types of functional groups. In addition, the carboxyl group (pK=$3.7{\pm}0.09$) was found to be the major binding sites ($2.57{\pm}0.06 mmol/g$) for positively-charged heavy-metal ions.

Mutational Analysis of the Metal-binding Sites of Peroxide Sensor PerR

  • Won, Young-Bin;Ji, Chang-Jun;Cho, Ju-Hyun;Lee, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1573-1576
    • /
    • 2010
  • Bacillus subtilis PerR is a metal-dependent peroxide-sensing transcription factor which uses metal-catalyzed histidine oxidation for peroxide-sensing. PerR contains two metal binding sites, one for structural $Zn^{2+}$ and the other for the regulatory/peroxide-sensing metal. Here we investigated the effect of mutations at both the structural and regulatory metal binding sites on the oxidation of either H37 or H91, two of the peroxide-sensing ligands. All four serine substitution mutants at the structural $Zn^{2+}$ site (C96S, C99S, C136S and C139S) exhibited no detectable oxidation at histidine residues. Two of the alanine substitution mutants at regulatory metal site (H37A and D85A) exhibited selective oxidation preferentially at the H91-containing tryptic peptide, whereas no oxidation was detected in the other mutants (H91A, H93A and D104A). Our results suggest that the cysteine residues coordinating structural $Zn^{2+}$ are essential for peroxide sensing by PerR, and that the C-terminal regulatory metal binding site composed of H91, H93 and D104 can bind $Fe^{2+}$, providing a possible explanation for the peroxide sensing mechanisms by PerR.

밀도 함수를 이용한 지르코니움, 바나듐, 철과 수소와의 반응성 연구 (The Hydrogen Binding Property Study by Density Functional Theory for Zr, V, Fe and Al)

  • 박태성;이택홍
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.602-608
    • /
    • 2014
  • The sequence of bond overlap population of metal hydrogen binding is in Al-H > Fe-H > Zr-H > V-H. This results shows the binding energy of Al-H is the biggest in this metals (Al, Fe, Zr, and V) and hydrogen interaction. The Vanadium-hydrogen binding shows the weakest binding energy compared to other metals and it causes easy hydrogen desorption from the corresponding metals. The net charge of Al-H show the biggest value of 0.2248 and the severe localizations of electrons around aluminum and imply strongest covalent binding nature in these metals. This study is applicable to the purification of hydrogen in other bulk gas.

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • 관원종;유창은;장원석;노영석;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권4호
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Binding energy of H2 to MOF-5: A Model Study

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4199-4204
    • /
    • 2011
  • Using models simulating the environment of two distinct adsorption sites of $H_2$ in metal-organic framework-5 (MOF-5), binding energies of $H_2$ to MOF-5 were evaluated at the MP2 and CCSD(T) level. For organic linker section modeled as dilithium 1,4-benzenedicarboxylate ($C_6H_4(COO)_2Li_2$), the MP2 and CCSD(T) basis set limit binding energies are estimated to be 5.1 and 4.4 kJ/mol, respectively. For metal oxide cluster section modeled as $Zn_4O(CO_2H)_6$, while the MP2 basis set limit binding energy estimate amounts to 5.4 kJ/mol, CCSD(T) correction to the MP2 results is shown to be insignificant with basis sets of small size. Substitution of benzene ring with pyrazine ring in the model for the organic linker section in MOF-5 is shown to decrease the $H_2$ binding energy noticeably at both the MP2 and CCSD(T) level, in contrast to the previous study based on DFT calculation results which manifested substantial increase of $H_2$ binding energies upon substitution of benzene ring with pyrazine ring in the similar model.

Synthesis and Properties of Calix[4]crown-6 Functionalized Polymers

  • Kim Su-Han;Lee Chil-Won;Jeon Young-Min;Gong Myoung-Seon
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.141-146
    • /
    • 2005
  • Calix[4]crown-6-2,4-bis(4-aminobutyl ether), which has a crown-6 moiety at the 1,3-position and amino function at the 2,4-position, was prepared as an intermediate for the subsequent synthesis of calix[4]crown-6-containing polyamide and polyimide using adipoyl chloride and 1,2,4,5-benzenetetracarboxylic dianhydride. The chemical structures were characterized by IR, $^{1}H NMR$ spectroscopy and elemental analysis, and some of their physical properties, including their thermal behavior, were examined. The ion binding characteristics of the monomer and polymers for alkali metal and alkali earth metal ions were measured by liquid-liquid extraction from the aqueous phase into the organic phase. It has been observed that polyamide has a high binding ability towards various metal cations as compared to polyimide, which showed cesium ion selectivity.

The Potentiometric Performances of the Cation Selective Electrodes based on Tetracycline and Chemically Modified Tetracycline

  • Kang, Sang-Hyuk;Rhee, In-Sook;Paeng, Ki-Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.143-145
    • /
    • 2011
  • Metal-binding antibiotics are very attractive choices as cation selective ionophores. The ability of tetracycline (TC) antibiotics to bind to metal ions has obtained much attention. TCs exhibit the potentiometric performance changes for various cations dependant on several experiment conditions. In this report, we investigated the potentiometric performance changes of TC as the modification of TC's possible metal binding site. We found that the selectivity alter with the blocking main binding site of ionophores for cations. And, additionally it is possible to control the selectivity of sensors with chemical modification of ionophores.