• Title/Summary/Keyword: Metal Pattern

Search Result 813, Processing Time 0.024 seconds

The Egect of Heavy Metal tons on the Differentiation of Cultured Muscle Cells of Chick Embryo (배양계배 근세포의 분화과정에 미치는 중금속 이온의 영향)

  • 위인선;이종빈
    • The Korean Journal of Zoology
    • /
    • v.30 no.4
    • /
    • pp.410-416
    • /
    • 1987
  • The effect of heavy metal ions on the synthesis of proteins in cultured chick embryonic muscle cells were examined by labeling the cellular proteins with 35S-methionine and the surface proteins with Nalssl and lactoperokidase. The protein pattern in the cells cultured for 48 hrs showed little or no difference whether or not the cells were treated with any of the metal ions including Cu2+, Cd2+ and Hg2+, which are known to block the fusion of mypblasts. However, a 43kd protein disappeared from the control cells cultured for 72 hrs but remained unchanged in the cells treated with the metal ions. When analyzed for the syntheiic pattern of membrane proteins, addition of the ions (particularly of Cda+ and Cr3+) caused a marked increase in the level of 66kd protein, as compared to that in the untreated cells. By contrast, the level of 29kd protein was much higher in the control cells than in the cells treated with the metal ions. These results suggest that the heavy metal ions appear to block the degradation of 43kd soluble protein and 66kd membrane protein, perhaps by inhibiting a metalloprotease, which may be essential for the myogenic process of embryonic muscle cells.

  • PDF

COMPARISON OF FRACTURE STRENGTH AND PATTERN OF ENDODONTICALLY TREATED TEETH RESTORED WITH FIBER POSTS AND METAL CAST POST (섬유강화 포스트와 금속주조 포스트의 파절강도 밋 파절양상의 비교)

  • Kim Mee-Kyung;Kim Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.535-543
    • /
    • 2004
  • Purpose: The purpose of this study is to compare the effect of two fiber post systems and one metal cast post system on the fracture strength and fracture pattern of crowned, endodontically treated teeth with 2 mm-height of the reamining tooth structure. Materials and methods: A total of 36 recently extracted sound human mandibular premolars were selected Each tooth structure of the crown portion except 2mm-height of the one above the cementoenamel junction was removed. After being endodontically treated, they were randomly distributed into 3 groups: group 1, restored with quarts fiber post(D.T. Light-Post), group 2, with glass fiber post(FRC Postec), and group 3, metal cast post and core. All teeth were fully covered with nonprecious metal crowns. Each specimen was embedded in an acrylic resin block and then secured in a universal load-testing machine. A compressive load was applied at a 130 degree angle to the long axis of the tooth until fractured, at a crosshead speed 20mm/min. The highest fracture loads were measured and recorded as the fracture strength of each specimen. Fracture areas were measured on the mid-buccal and mid-lingual point from the crown margins. One-way analysis of variance and Turkey test were used to determine the statistic significance of the different fracture loads and areas among the groups (p<0.05). Results: The mean fracture loads were $1391{\pm}$425N(group 1), $1458{\pm}476N$(group 2) and $1301{\pm}319N$(group 3). The fracture loads among the three groups had no statistically signifiant difference (p>.05). The mean fracture area of the fiber post was closer to the crown margin than that of the metal cast post and core(p<.05). The metal cast post showed unrestorable and catastrophic fracture patterns. Conclusion: Within the limitations of this study, fracture loads with any statistically significant difference were not recorded for endodontically treated teeth restored with two fiber posts and the metal cast post. But teeth restored with the fiber posts typically showed the fracture pattern close to the crown margin, which was almost restorable.

Effect of Different Front Metal Design on Efficiency Affected by Series Resistance and Short Circuit Current Density in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 전면 전극의 패턴에 따른 전류 밀도 및 특성 저항 변화에 대한 영향과 효율 변화)

  • Jeong, Sujeong;Shin, Seunghyun;Choi, Dongjin;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.518-523
    • /
    • 2017
  • In commercial solar cells, the pattern of the front electrode is critical to effectively assemble the photo generated current. The power loss in solar cells caused by the front electrode was categorized as four types. First, losses due to the metallic resistance of the electrode. Second, losses due to the contact resistance of the electrode and emitter. Third, losses due to the emitter resistance when current flows through the emitter. Fourth, losses due to the shading effect of the front metal electrode, which has a high reflectance. In this paper, optimizing the number of finger on a $4{\times}4$ solar cell is demonstrated with known theory. We compared the short circuit current density and fill factor to evaluate the power loss from the front metal contact calculation result. By experiment, the short circuit current density($J_{sc}$), taken in each pattern as 37.61, 37.53, and $37.38mA/cm^2$ decreased as the number of fingers increased. The fill factor(FF), measured in each pattern as 0.7745, 0.7782 and 0.7843 increased as number of fingers increased. The results suggested that the efficiency(Eff) was measured in each pattern as 17.51, 17.81, and 17.84 %. Throughout this study, the short-circuit current densities($J_{sc}$) and fill factor(FF) varied according to the number of fingers in the front metal pattern. The effects on the efficiency of the two factors were also investigated.

A Progressive Automated-Process Planning and Die Design and Working System for Blanking or Piercing and Bending of Sheet Metal Product (박판제품의 블랭킹 및 피어싱과 굽힘 가공을 위한 순차이송용 공정 및 금형 설계와 가공자동화 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.246-259
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and manufacturing of irregular shaped sheet metal product for blanking or piercing and bending operations. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories experimental results and the empirical knowledge of field experts, This system has been written in AutoLISp on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules which are input and shape treatment, flat pattern-layout, pro-processor module. Based on the knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product complexities of blank geometry and punch profile sheet metal to give flat pattern and automatically account for the adjustment of bending allowances to match tooling requirements by checking dimensions and generating NC data automatically according to drawings of die-layout module. Results carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing and bending die in this field.

  • PDF

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis (유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계)

  • Cha, S.H.;Shin, M.S.;Lee, H.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

Discolored Metal Pad Image Classification Based on Gabor Texture Features Using GPU (GPU를 이용한 Gabor Texture 특징점 기반의 금속 패드 변색 분류 알고리즘)

  • Cui, Xue-Nan;Park, Eun-Soo;Kim, Jun-Chul;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.778-785
    • /
    • 2009
  • This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.

On the Development of Lofts for Doubly Curved Sheet Metal Components

  • Prasad, K.S.R.K.;Selvaraj, P.;Ayachit, Praveen V.;Nagamani, B.V.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.199-211
    • /
    • 2006
  • Practical automated flat pattern generation with inbuilt production features for doubly curved sheet metal components (SMCs) is addressed here utilizing a new and unique Point Transformation Algorithm (PTA). This is the third in the series of papers on practical Flat Pattern Development (FPD) [8] and Production Loft Generation Systems (PLGS) [9] complementing the pioneering work [6,7]. In the first two publications, automated loft generation programs have addressed sheet metal components having a Principal Flat Surface (PFS) only. The flat pattern development of 3-D components that do not have the flat surface(termed as Non-PFS components) having complex features of double curvature in addition to cutouts and nibbled holes typical of aircraft components were so far not addressed due to lack of relevant published algorithms. This paper traces the evolution of developments and provides the record of fully illustrated, automated loft generation scheme for aircraft SMCs including the Non-PFS components which underwent validation through production tests by sponsors. Details of some of the unique features of the system like simplified surface model generation, termed as topological model and powerful algorithms deployed with potential for CAD/CAM applications are included.

An experimental study on the fracture of Nd:YAG laser welded amorphous foils (Nd:YAG 레이저를 이용한 비정질 박판 용접부의 파괴에 대한 실험적 연구)

  • 이건상
    • Laser Solutions
    • /
    • v.3 no.3
    • /
    • pp.31-37
    • /
    • 2000
  • In this paper, the possibilities of the laser overlap spot welding were studied to utilize the advantageous properties of amorphous metal foils. In order to estimate the usage of amorphous metals foils as structural members, the tensile shear strength and the fracture features were investigated. Although the crystalline zone on the surface was formed, it was not the direct cause of the fracture of the weld. The fracture of the weld resulted from the geometry discontinuity between the workpiece and the protrusion zone, which was formed during the weld process. The vein pattern - the typical feature of the fracture of the amorphous metal - was formed on the fracture surface. The tensile shear stress was reached to 1200 N/㎟ (2-foils overlap welding) and 900 N/㎟ (10-foils overlap welding), whereas the tensile strength of the workpiece was 1500-2000 N/㎟.

  • PDF

THE EFFECT OF INVESTMENT'S W/P RATIO ON THE FIN OF PARTIAL DENTURE METAL CASTINGS (매몰재의 혼수비가 국부의치 금속구조물의 Fin에 미치는 영향에 관한 실험적 연구)

  • Choi, Sub-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.45-47
    • /
    • 1978
  • We use investment to retain the mould of the wax pattern in making dental metal castings. A fin on the metal casting is occasionally formed due to several factors. The factors making the fin are improper burn out time and temperature, improper W/P ratio of investment and lining of asbestos in casting ring. The purpose of this study is to investigate the effect of W/P ratio of investment on the fin formation. Except the W/P ratio of investment which used to invest the wax pattern, the study was done under same condition; burn out time and temperature, W/P ratio of refractory cast(W/P=0.12) and asbestos lining in casting ring. The obtained result is that the fin is more likely to be formed on the casting which invested with higher W/P ratio of investment to that of refractory cast.

  • PDF