• Title/Summary/Keyword: Metal Mold

Search Result 562, Processing Time 0.021 seconds

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

Study on Structural Strength Analysis of Automotive Seat Frame (자동차 시트 프레임의 구조 강도 해석에 관한 연구)

  • Kim, Key-Sun;Kim, Sung-Soo;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Seat is the part relevant to comfortableness and safety among automotive parts directly. It also should have sufficient stiffness and strength to satisfy these conditions and ensure the safety of passenger. Automotive seat is modelled with 3D and is simulated with structural analyses about three kinds of experiments by before and after gap, side gap, before and after moment strength. As analysis result, deformation angles of $0.038^{\circ}$ and $0.04^{\circ}$ are respectively shown at before and after gap test, side gap test. Through before and after the moment strength test, maximum total deformations of 0.18946mm and 3.2482mm are respectively shown at front and rear loads. By the study result of no excessive deformation and no fracture at automotive seat frame, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Behaviour of the Fretting Wear and Corrosion Characteristics on a Hinge Material (힌지재료의 부식특성 및 찰과마멸 거동)

  • Kwak Nam-In;Lim Uh-Joh;Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.39-44
    • /
    • 1999
  • In the study, corrosion characteristics under various corrosion environments(neutral solution, acid solution), for various hinge materials(SM20C, BsC3 and STC4H), were investigated by immersion test, and the behaviour of fretting wear under atmosphere was studied. In immersion test, corrosion potential of those materials showed to be noble in the sequence of $0.5\%HNO_3$> underground water> $0.5\%\;H_2SO_4$ solution, and potential of a sole material, except BsC3, was more noble than these of mixed materials. In same material SM20C, the fretting wear loss of rotary materials increased about 1.9 times to that of moving materials, because of surface hardening by frictional force.

  • PDF

Fabrication of Hot Embossing Plastic Stamps for Microstructures (마이크로 구조물 형성을 위한 핫 엠보싱용 플라스틱 스탬프 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.589-593
    • /
    • 2005
  • Nanoimprinting lithography (NIL) is known as a suitable technique for fabricating nano and micro structures of high definition. Hot embossing is one of NIL techniques and can imprint on thin films and bulk polymers. Key issues of hot embossing are time and expense needed to produce a stamp withstanding a high temperature and pressure. Fabrication of a metal stamp such as an electroplated nickel is cost intensive and time consuming. A ceramic stamp made by silicon is easy to break when the pressure is applied. In this paper, a plastic stamp using a high temperature epoxy was fabricated and tested. The plastic stamp was relatively inexpensive, rapid to produce and durable enough to withstanding multiple hot embossing cycles. The merits of low viscosity epoxy solutions were a fast degassing and a rapid filling the microstructures. The hot embossing process with plastic stamp was performed on PMMA substrates. The hot embossing was conducted at 12.6 bar, $120^{\circ}C$ and 10 minutes. An imprinted PMMA wafer was almost same value of the plastic stamp after 10 times embossing. Entire fabrication process from silicon master to plastic stamp was completed within 12 hours.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

Acoustic Abosrption Characteristic and Fabrication process of Foamed Aluminum (발포알루미늄의 제조공정 및 흡음특성)

  • Hur, Bo-Young;Ahn, Hyo-Jun;Jeon, Sung-Hwan;Choi, Dae-Choul;Kim, Sang-Youl;Hur, Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.396-402
    • /
    • 2000
  • Porous structures of aluminum foam have been studied. The apparent foam shape, foam hight, density, pore size, shape, and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot mixed with various amount of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manupulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

  • PDF

Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation (S-K 구성방정식을 이용한 프린터용 3D Ti-6Al-4V 재료의 유동응력 결정 및 절삭력 예측)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.68-74
    • /
    • 2018
  • Study on the Ti-6Al-4V have been carried out using cutting simulation, and researches for cutting force and chip shape prediction have been actively conducted under various conditions. However, a 3D printer application method using Ti-6Al-4V metal powder material as a high-power method has been studied for the purpose of prototyping, mold modification and product modification while lowering material removal rate. However, in the case of products / parts made of 3D printers using powder materials, problems may occur in the contact surface during tolerance management and assembly due to the degradation of the surface quality. As a result, even if a 3D printer is applied, post-processing through cutting is essential for surface quality improvement and tolerance management. In the cutting simulation, the cutting force and the chip shape were predicted based on the Johnson-Cook composition equation, but the shape of the shear type chip was not predictable. To solve this problem, we added a damaging term or strain softening term to the Johnson-Cook constitutive equation to predict chip shape. In this thesis, we applied the constant value of the S-K equations to the cutting simulation to predict the cutting force and compare with the experimental data to verify the validity of the cutting simulation and analyzed the machining characterization by considering conditions.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Frame Butted (자전거 프레임 버티드 형상에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.271-276
    • /
    • 2018
  • When the driver riding in a bicycle goes on board, the load of driver is shown differently according to the position loaded on the frame of bicycle. The load is applied most at the joint of bike frame and the load at the mid-part of frame is applied least than the other parts. So, the weight of frame is decreased as the part not applied with a lot of load is manufactured into the thin thickness. As the part applied with high load is manufactured into the thick thickness, it can be endured through this load. The configurations of general frame, double butted and triple butted were modelled by using CATIA program. The durabilities of each model due to the load of passenger were investigated by carrying the structural and fatigue analyses. As this study result investigated with the analysis program of ANSYS, the deformation of general frame happened most and that of triple butted became least. These simulation analysis data are intended to be used to design the actual bicycle frame in the most efficient way at design and manufacture.

Convergence Study on Durability due to the Configuration of Front Under Cover of Off-road SUV (오프로드용 SUV의 프론트 언더커버 형상에 따른 내구성에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.149-154
    • /
    • 2019
  • This paper is to study the durability through structural analysis on the front undercover of SUV car for offroad. It was investigated which model became structurally best by analyzing three kinds of models which are similar to the configuration of undercover for the protection of the part under car body which has been used really. The models of undercover were designed through CATIA program and analyzed by using ANSYS program as three kinds of models A, B and C. Through the analysis results, model B was expressed to have the best durability as model B has the least equivalent stress and the longest fatigue life among three models. As the design data with the durability of undercover obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.