• Title/Summary/Keyword: Metal Injection Moulding (MIM)

Search Result 6, Processing Time 0.027 seconds

Metal Injection Moulding -Technological Trends and European Business Situation

  • Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.229-230
    • /
    • 2006
  • The global metal injection moulding industry is getting mature. The technology is on its way to grow from a niche technology to a widely accepted manufacturing process. This paper addresses the latest technological trends in MIM. Challenges in materials development as well as the current limits of the technology are discussed. Trends in processing like 2-component injection moulding and micro injection moulding are presented. The European MIM market situation is described and some key factors for business success are addressed. In the discussion of future business opportunities best practice examples are included.

  • PDF

Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process

  • Herranz, G.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.225-226
    • /
    • 2006
  • In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and $600^{\circ}C$. The specimens were sintered at temperatures between 1210 and $1280^{\circ}C$ in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.

  • PDF

Metal Injection Moulding of Duplex Stainless Steels

  • Sotomayor, M. E.;Varez, A.;Levenfeld, B.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.507-508
    • /
    • 2006
  • In this communication the development of a new metal injection moulding (MIM) system for duplex stainless steels is presented. The metal powders were prepared by premixing 316L and 430L stainless steels gas atomised powders in a ratio of 50:50. The binder used to prepare the feedstock was composed by HDPE and paraffin wax. Torque measurements of the mixture indicated that the maximum amount of metal was 68 vol%. The polymeric part was driven off by thermal debinding and the sintering was performed in low vacuum. The final densities were close to the theoretical ones.

  • PDF

Effect of Palm Stearin on Rheological Properties of Metal Injection Molding (MIM) Feedstock

  • Ismail, Muhammad Hussain;Omar, Mohd Afian;Subuki, Istikamah;Jumahat, Aidah;Halim, Zahurin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.223-224
    • /
    • 2006
  • In this paper, rheological characteristics of Metal Injection Moulding (MIM) feedstock using locally binder of palm stearin are presented. The feedstock consisted of 316L-grade stainless steel powder with three different particle sizes and the binders comprise palm stearin and polyethylene. The viscosity of MIM feedstock at different temperatures and shear rates was measured and evaluated. Results showed that, the feedstock containing palm stearin exhibited suitable rheological properties and suitable to produce a homogeneous feedstock that is favorable for injection molding process.

  • PDF

Influence of the Morphology and the Particle Size on the Processing of Bronze 90/10 Powders by Metal Injection Moulding (MIM)

  • Contreras, Jose M.;Jimenez-Morales, Antonia;Torralba, Jose M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.503-504
    • /
    • 2006
  • The MIM technology is an alternative process for fabricating near net shape components that usually uses gas atomised powders with small size $(<\;20\;{\mu}m)$ and spherical shape. In this work, the possibility of changing partially or totally spherical powder by an irregular and/or coarse one that is cheaper than the former was investigated. In this way, different bronze 90/10 components were fabricated by mixing three different types of powder, gas and water atomised with different particle sizes, in order to evaluate how the particle shape and size affect the MIM process.

  • PDF

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.