• Title/Summary/Keyword: Metal Forming Processes

Search Result 329, Processing Time 0.027 seconds

CAE of Sheet Metal Forming Processes - The Present Status and The Future Prospect (박판성형에서의 CAE - 현황과 전망)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.25-36
    • /
    • 1994
  • The sheet metal forming process is one of the most important manufacturing processes in the modern industry. From the view point of mechanics involved, it is very difficult to predict whether a newly designed sheet metal part can be formed without defects such as fracture, wrinkling and surface unevenness, etc. In order to reduce the effort taken in the trial-and-error process and to control the process effectively, a systematic method for process modeling is to required. The aim of sheet forming simulation through the process modeling is to reduce the lead time for die disign and manufacture by process modeling is to reduce the lead time for die design and manufacture by means of investigating the deformation mechanics and the mutual interaction between the process parameters. In this paper, the necessity, the present status, and the future technology about CAE of sheet forming simulation have been discussed.

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition - (탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 -)

  • 심현보;정완진;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1129-1137
    • /
    • 1990
  • Based on the formulation which incorporates large deformation and anisotropy, an elastic-plastic finite element code is developed with membrane element to include the contact treatment. For the analysis of the general sheet metal forming process with contact condition, the treatment of contact is considered by employing the successive skew coordinate system. Three kinds of sheet metal forming processes with contact conditions are analyzed; stretching of a square diaphragm with a hemispherical punch, deep drawing of a circular cup and deep drawing of a square cup. Then the computational results are compared with the experiment. The computed loads and the distribution of the thickness strain are in good agreement with the experiment for all cases. However, the computational results of the thickness strain show the effect of bending can not be ignored in the deep drawing process whereas the effect of bending is negligible in stretching.

Comparison of Energy Consumptions for Various Forming Processes (성형 가공 차이에 의한 에너지 소비량 비교)

  • Yin, Z.H.;Zhang, Y.J.;Chae, M.S.;Park, B.C.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.333-336
    • /
    • 2008
  • There are many different kinds of forming processes to make a tubular product such as hydroforming and tube drawing. However, we should consider a better forming process in view point of energy consumption and $CO_2$ emission to save our earth. In this paper we have conducted FEM simulations to the various forming processes for sheet and tubular products to compare their energy consumptions. One example is tubular product and the other for drawn cup. From the comparisons of total energy for hydrofroming and tube sinking processes, hydroforming is consumed more energy than tube drawing. Also the cup drawing from sheet metal and tube sinking for the cup with flange indicate that the tube sinking is better than cup drawing of sheet metal in energy consumption.

  • PDF

Finite Element Analysis of Sheet Metal Forming Process Using Shell Element (쉘 요소를 이용한 박판성형공정의 유한요소해석)

  • Jung Dong-Won;Ko Hyung-Hoon;Lee Chan-Ho;You Ho-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.152-158
    • /
    • 2006
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it is well-known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research experimental results were compared with the analysis results obtained by using the shell element which is applied newly in the AutoForm commercial software. The shell element is a compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

Springback Analysis in the Anisotropic Sheet Metal Forming Process with Axisymmetric Tools (이방성 금속판재 성형공정에서 블랭크 가압력에 따른 스프링백 해석)

  • 강정진;허영무;홍석관;송경식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.389-392
    • /
    • 2003
  • The deterioration of dimensional accuracy, caused by springback, is one of problems to always occur in sheet metal forming processes. As the demand for lighter and stronger metals increases, the development of improved forming processes settling the springback problem becomes more important. In this work, springback phenomena are investigated which occur in the press forming process with the anisotropic sheet metal and axisymmetric tools. The improvement possibility of dimensional accuracies, mainly, flatness, will be examined by applying blank holding forces as a method of springback control.

  • PDF

Proposal of Novel Friction Testing Method in Bulk Metal Forming (체적성형공정에서의 새로운 마찰시험법 제안)

  • Kang, S.H.;Yun, Y.W.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.445-449
    • /
    • 2009
  • With the recent increase in the demand for the net-shape forming, numerical simulations are being commonly adopted to increase the efficiency and effectiveness of design of bulk metal forming processes. Proper consideration of tribological problems at the contact interface between the tool and workpiece is crucial in such simulations. In other words, lubrication and friction play important roles in metal forming by influencing the metal flow, forming load and die wear. In order to quantitatively estimate such friction condition or lubricant characteristic, the constant shear friction model is widely used for bulk deformation analyses. For this, new friction testing method based on the forward or backward extrusion process is proposed to predict the shear friction factor in this work. In this method, the tube-shaped punch pressurizes the workpiece so that the heights at the center and outer of punch (or mandrel) become different according to the friction condition. That is, the height at the center of punch is higher than that at the outer of the punch when the friction condition at the contact interface is severe. From this founding, the proposed friction testing method can be applied to effectively evaluate the friction condition in bulk metal forming processes.

  • PDF

On the Prediction of the Wrinkling Initiation in Sheet Metal Forming Processes (박판성형 공정에서 발생하는 주름의 예측에 관하여)

  • Kim J. B.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.124-127
    • /
    • 2000
  • The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. For the description of wrinkling growth, the mesh elements should be sufficiently small and the size of finite element matrix becomes large. In the static implicit finite element method therefore, the direct analysis of wrinkling growth in a complex sheet metal forming process is rather difficult. From the industrial viewpoint of tooling design, the readily available information of possibility and location of wrinkling is sometimes more preferable to the detailed time-consuming information. In the present study, therefore, the wrinkling factor that shows locations and relative possibility of wrinkling initiation is proposed as a convenient tool of relative wrinkling estimation based on the energy criterion. The location and relative possibility of wrinkling initiation are predicted by calculating the wrinkling factor in various sheet metal forming processes such as cylindrical cup deep drawing, spherical cup deep drawing, and elliptical cup deep drawing. The wrinkling factor is also implemented in the analysis of the door inner stamping process to predict wrinkling.

  • PDF

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF