• Title/Summary/Keyword: Metal Electrodeposition

Search Result 94, Processing Time 0.023 seconds

Study of Stress Changes in Nanocrystalline CoW Thin/Thick Film Alloys Eletrodeposited from Citrate Baths (Citrate Baths로부터 전기도금된 나노결정립 CoW 합금 박막/후막의 응력변화에 대한 연구)

  • Cho, Ik-Jong;Park, Deok-Yong;Ihn, Hyun-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.141-150
    • /
    • 2006
  • Nanocrystalline CoW thin/thick film alloys were electodeposited from citrate baths to investigate the influences of metal ion concentration, current density and solution pH on chemical composition, current efficiency, residual stress, surface morphology, and microstructure of the film. Deposit W (tungsten) content in CoW thin/thick film increased with increasing W ion concentration, current density, and solution pH in the plating bath. It was observed that residual stress in CoW thin/thick film decreased with increasing W ion concentration and solution pH. CoW thin film exhibited mixed phases of hop Co [(100) and (002)] and hcp $Co_3W$ [(002) and (201)] at W ion concentration with 0.02 to 0.08 M. The microstructure of CoW thin film at W ion concentration of 0.1 to 0.2 M was close to amorphous phase. The dominant phases were found to be hop Co (002) and hop $Co_3W$ [(200), (002) and (201)] at the current densities of 5, 10, 25, and $100mA{\cdot}cm^{-2}$ CoW thin film at the current densities of 50 and $75mA{\cdot}cm^{-2}$ was close to amorphous phase. At solution pH 8.7, CoW thin film exhibited hcp Co (002) and hop $Co_3W$ [(200), (002) and (201)]. Below solution pH 8.7, CoW thin film exhibited amorphous microstructure. The optimum electrodeposition conditions for CoW thin/thick film were found to be W ion concentration of 0.08 M, current density of $10mA{\cdot}cm^{-2}$, and solution pH 8.7.

Electrochemical Synthesis of Conducting Polypyrrole in Nucleophilic Solvent (친핵성 용매하에서 전도성 Polypyrrole의 전기화학적 합성)

  • Lee, Hong-Ki;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.616-623
    • /
    • 1994
  • Conductive Polypyrrole films have been synthesized by electrochemical method in nucleophilic solvent such as N, N-dimetylformamide(DMF), dimethylsulfoxide(DMSO). The effect of protic acid as supporting electrolyte to decrease the nucleophilicity of the solvent was studied. Cyclic voltammetry, I-t transients were carried out to investigate the electrodeposition of conductive polypyrrole film on platinum electrode. Three peaks of 0.65V, 0.85V, and 1.2V vs. $Ag/AgNO_3$ indicated oxidation of monomer, oxidation of pyrrole to the platinum electrode and decomposition of polypyrrole film, respectively. With the I-t transients, nucleation process was confirmed and from obtained linear fits of I vs.t2resembles the metal film formation, and 2.15-2.26 of n-value could be calculated. As concentration of pyrrole or prolic acid was increased, the conductivity of polypyrrole film increased linearly. Tensile strength and elongation were investigated for comparing the mechanical properties and also SEM was performed for morphology investigation.

  • PDF

Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire (전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화)

  • Yoon, Seok Soo;Cho, Seong Eon;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • The model for the magneto-impedance of composite wires composed of highly conductive nonmagnetic metal core and soft magnetic shell was derived based on the Maxwell's equations. The Cu($100{\mu}m$ diameter)/$Ni_{80}Fe_{20}$($15{\mu}m$ thickness) core/shell composite wire was fabricated by electrodeposition. The impedance spectra for the $Cu/Ni_{80}Fe_{20}$ core/shell composite wire were measured in the frequency range of 10 kHz~10 MHz under longitudinal dc magnetic field in 0 Oe~200 Oe. The spectra of complex permeability in circumferential direction were extracted from the impedance spectra by using the derived model. The extracted spectra of complex permeability showed relaxation-type dispersion which is well curve-fitted with Debye equation with single relaxation frequency. By analyzing the magnetic field dependence of the complex permeability spectra, it has been verified that the composite wire has magnetic anisotropy in longitudinal direction and the origin of the single relaxation process is the magnetization rotation in circumferential direction.

A Development of Tapered Metallic Microneedle Array for Bio-medical Application (생체의학에 적용 가능한 테이퍼형태의 금속성 마이코로니들 어레이의 개발)

  • Che Woo Seong;Lee Jeong-Bong;Kim Kabseog;Kim Kyunghwan;Jin Byung-Uk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.59-66
    • /
    • 2004
  • This paper presents a novel fabrication process for a tapered hollow metallic microneedle array using backside exposure of SU-8, and analytic solutions of critical buckling of a tapered hollow microneedle. An SU-8 meta was formed on a Pyrex glass substrate and another SU-8 layer, which was spun on top of the SU-8 mesa, was exposed through the backside of the glass substrate. An array of SU-8 tapered pillar structures. with angles in the range of $3.1^{\circ}{\sim}5^{\circ}$ was formed on top of the SU-8 mesa. Conformal electrodeposition of metal was carried out followed by a mechanical polishing using a pianarizing polymeric layer. All organic layers were then removed to create a metallic hollow microneedle array with a fluidic reservoir on the backside. Both $200{\mu}m\;and\;400{\mu}m$ tall, 10 by 10 arrays of metallic microneedles with inner diameters of the tip in the range of $33.6{\sim}101\;{\mu}m$ and wall thickness of $10{\mu}m\;-\;20{\mu}m$ were fabricated. Analytic solutions of the critical buckling of arbitrary-angled truncated cone-shaped columns are also presented. It was found that a single $400{\mu}m$ tall hollow cylindrical microneedle made of electroplated nickel with a wall thickness of $20{\mu}m$, a tapered angle of $3.08^{\circ}$ and a tip inner diameter of $33.6{\mu}m$ has a critical buckling force of 1.8 N. This analytic solution can be used for square or rectangular cross-sectioned column structures with proper modifications.

  • PDF