• Title/Summary/Keyword: Metal Dissolution

Search Result 244, Processing Time 0.021 seconds

Review of Factors Affecting IASCC Initiation of Stainless Steel in PWRs (원자로 내부구조물 균열개시 민감도에 미치는 영향인자 고찰)

  • Hwang, Seong Sik;Choi, Min Jae;Kim, Sung Woo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.210-229
    • /
    • 2021
  • To safely operate domestic nuclear power plants approaching the end of their design life, the material degradation management strategy of the components is important. Among studies conducted to improve the soundness of nuclear reactor components, research methods for understanding the degradation of reactor internals and preparing management strategies were surveyed. Since the IGSCC (Intergranular Stress Corrosion Cracking) initiation and propagation process is associated with metal dissolution at the crack tip, crack initiation sensitivity was decreased in the hydrogenated water with decreased crack sensitivity but occurrence of small surface cracks increased. A stress of 50 to 55% of the yield strength of the irradiated materials was required to cause IASCC (Irradiation Assisted Stress Corrosion Cracking) failure at the end of the reactor operating life. In the threshold-stress analysis, IASCC cracks were not expected to occur until the end of life at a stress of less than 62% of the investigated yield strength, and the IASCC critical dose was determined to be 4 dpa (Displacement Per Atom). The stainless steel surface oxide was composed of an internal Cr-rich spinel oxide and an external Fe and Ni-rich oxide, regardless of the dose and applied strain level.

Anode processes on Pt and ceramic anodes in chloride and oxide-chloride melts

  • Mullabaev, A.R.;Kovrov, V.A.;Kholkina, A.S.;Zaikov, Yu.P.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.965-974
    • /
    • 2022
  • Platinum anodes are widely used for metal oxides reduction in LiCl-Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO-Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO-Li2O ceramics were studied in (80 mol.%) LiCl-(20mol.%)KCl and (80 mol.%)LiCl-(20 mol.%)KCl-Li2O melts by cyclic voltammetry, potentiostatic and galvanostatic electrolysis. Experiments performed in the LiCl-KCl melt without Li2O illustrate that a Pt anode dissolution causes the Pt2+ ions formation at 3.14 V and 550℃ and at 3.04 V and 650℃. A two-stage Pt oxidation was observed in the melts with the Li2O at 2.40 ÷ 2.43 V, which resulted in the Li2PtO3 formation. Oxygen current efficiency of the Pt anode at 2.8 V and 650℃ reached about 96%. The anode process on the NiO-Li2O electrode in the LiCl-KCl melt without Li2O proceeds at the potentials more positive than 3.1 V and results in the electrochemical decomposition of ceramic electrode to NiO and O2. Oxygen current efficiency on NiO-Li2O is close to 100%. The NiO-Li2O ceramic anode demonstrated good electrochemical characteristics during the galvanostatic electrolysis at 0.25 A/cm2 for 35 h and may be successfully used for pyrochemical treating of spent nuclear fuel.

Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm (플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘)

  • Jin Sung Park;Jae Won Lee;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2023
  • This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.

A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Akio Honjo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.

Corrosion Behavior of Super Duplex Stainless Steel (STS 329J4L) Tubes and Fin-Tubes Used in Thermal Power Plant Applications (화력발전소용 슈퍼 듀플렉스 스테인리스 강(STS 329J4L) 조관 튜브 및 핀-튜브재의 부식거동)

  • Jin Sung Park;Yong Hyeon Kim;Seung Gab Hong;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.435-446
    • /
    • 2023
  • Corrosion behaviors of laser-welded super duplex stainless steel (SDSS) tubes after exposure to an actual power plant environment for one year and those of fin-tube welded SDSS were evaluated. Results showed that corrosion damage on the back side of the SDSS tube in the direction of hot air was higher than that on the front side regardless of weldment location. However, corrosion damage showed no difference between weldment and base metal due to recovery of phase fraction in the weldment through post weld heat treatment (PWHT). Nevertheless, the SDSS tube showed severe corrosion damage along grain boundary due to surface phase transformation (δ → γ) and Cr2N precipitation caused by PWHT with a high N2 atmosphere. Corrosion resistance of the SDSS tube was recovered when degraded surface was removed. Corrosion sensitivity of a fin-tube increased significantly due to pre-existing crevice, unbalanced phase fraction, and σ phase precipitation adjacent to the fusion line. Although corrosion resistance was improved by recovered phase fraction and sufficient dissolution of σ phase during PWHT, corrosion reaction was concentrated at the pre-existing crevice. These results suggest that welding conditions for fin-tube steel should be optimized to improve corrosion resistance by removing pre-existing crevice in the weldment.

Molybdenum release from high burnup spent nuclear fuel at alkaline and hyperalkaline pH

  • Sonia Garcia-Gomez;Javier Gimenez;Ignasi Casas;Jordi Llorca;Joan De Pablo;Albert Martinez-Torrents;Frederic Clarens;Jakub Kokinda;Luis Iglesias;Daniel Serrano-Purroy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.34-41
    • /
    • 2024
  • This work presents experimental data and modelling of the release of Mo from high-burnup spent nuclear fuel (63 MWd/kgU) at two different pH values, 8.4 and 13.2 in air. The release of Mo from SF to the solution is around two orders of magnitude higher at pH = 13.2 than at pH = 8.4. The high Mo release at high pH would indicate that Mo would not be congruently released with uranium and would have an important contribution to the Instant Release Fraction, with a value of 5.3%. Parallel experiments with pure non irradiated Mo(s) and XPS determinations indicated that the faster dissolution at pH = 13.2 could be the consequence of the higher releases from metallic Mo in the fuel through a surface complexation mechanism promoted by the OH- and the oxidation of the metal to Mo(VI) via the formation of intermediate Mo(IV) and Mo(V) species.

Assessment of Soil Contamination and Hydrogeochemistry for Drinking Water Sites in Korea (국내 먹는샘물 개발지역의 토양 오염 평가 및 수리지구화학적 특성)

  • 이두호;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.41-53
    • /
    • 1997
  • Geochemical data of soil and water samples were presented in order to assess the environmental impart for drinking water sites. Microscopic observation of rock samples and physical and chemical analysis of soil and water samples were undertaken. The geology of study areas are classified into three groups such as granitic rocks, meta-sedimentary rocks and sedimentary rocks. Enrichment of heavy metals derived from those rocks is not found in this study areas. Soils were analyzed for Cu, Pb, Zn, Cd and Cr using AAS extracted by HNO$_3$+HClO$_4$ and 0.1 N HCl. Heavy metal concentrations in soils are within the range of those in uncontaminated soils. In comparison of metal contents extracted by 0.1 N HCl and HNO$_3$+HC1O$_4$, less than 10% of the heavy metals are present in the exchangeable fraction. In particular, an pollution index has been proposed to assess the degree of soil contamination. Pollution index in soils are between 0.03 and 0.47 therefore, soils are not polluted with heavy metals. Deep groundwaters within granitic rocks have been evolved into Na$\^$+/-HCO$_3$$\^$-/ type, whereas other deep groundwaters evolved into Ca$\^$2+/-HCO$_3$$\^$-/ type. The predominance of Na$\^$+/ over Ca$\^$2+/ in deep groundwaters within granitic rocks is a result of dissolution of plagioclase, but for sedimentary and meta-sedimentary rocks, dissolution of calcite is a dominant factor for their hydrogeochemistry. The pH, conductivity and contents of the most dissolved ions in the water increase with depth. Shallow groundwaters, however, are highly susceptible to pollution owing to agricultural activities, considering the fact that high contents of nitrate, chloride and potassium, and high K/Na ratio are observed in some shallow groundwaters. In a thermodynamic approach, most natural water samples are plotted within the stability fields of kaolinite and smectite. Therefore, microcline and other feldspars will alter to form clay minerals, such as kaolinite and smectite. From the modelling for water-rock interactions based on mass balance equation, models accord well with behavior of the ions and results of thermodynamic studies are derived.

  • PDF

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.

Waste Recycling Through Biological Route (생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用))

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Park, Kyung-Ho;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.3-15
    • /
    • 2008
  • Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.

Stabilization of Heavy Metals-contaminated Soils Around the Abandoned Mine area Using Phosphate (인산염을 이용한 휴.폐광산 주변 중금속 오염토양의 안정화처리에 관한 연구)

  • Lee, Eun-Gi;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.100-106
    • /
    • 2007
  • The objective of this study was to evaluate the efficiency of $(NH_4)_2HPO_4$, $Na_2HPO_4{\cdot}12H_2O$, $CaHPO_4{\cdot}2H_2O$, $Ca(H_2PO_4)_2{\cdot}H_2O$ and $H_3PO_4$ for the stabilization of soils contaminated with multi-metals containing Pb, Cd and As. The application rate of stabilizers to soils was determined based on $PO_4/Pb_{total}$ molar ratio of 0.5, 1, 2, 4. The results of Korea Standard Test and TCLP (EPA Method 1311) showed the reduction of metal leachabilities below the regulatory limits for Pb and Cd when $H_3PO_4$ and $Ca(H_2PO_4)_2{\cdot}H_2O$ were applied. However, stabilization efficiency for Cd was low and in case of As leaching concentration increased rather. It is considered that $PO_4$ reacted effectively $Pb^{2+}$ due to leaching Pb under low pH condition created by adding $H_3PO_4$. Accordingly Pb was stabilized by dissolution and precipitation of hydroxypyromorphite. From the change of metals fraction using sequential extraction procedure when $H_3PO_4$ applied as a stabilizer, we confirmed that residual fraction increased more than 60% and this result was accorded with XRD analysis that detected only hydroxypyromorphite peak in $H_3PO_4$.