• 제목/요약/키워드: Metagenomic

Search Result 141, Processing Time 0.102 seconds

Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library

  • Lee, Chang-Muk;Lee, Young-Seok;Seo, So-Hyeon;Yoon, Sang-Hong;Kim, Soo-Jin;Hahn, Bum-Soo;Sim, Joon-Soo;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1196-1206
    • /
    • 2014
  • A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.

Metagenomic Analysis of Fungal Communities Inhabiting the Fairy Ring Zone of Tricholoma matsutake

  • Kim, Miae;Yoon, Hyeokjun;You, Young-Hyun;Kim, Ye-Eun;Woo, Ju-Ri;Seo, Yeonggyo;Lee, Gyeong-Min;Kim, Young Ja;Kong, Won-Sik;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1347-1356
    • /
    • 2013
  • Tricholoma matsutake, an ectomycorrhiza that has mutual relationships with the rootlet of Pinus denisflora, forms a fruiting body that serves as a valuable food in Asia. However, the artificial culture of this fungus has not been successful. Soil fungi, including T. matsutake, coexist with many other microorganisms and plants; therefore, complex microbial communities have an influence on the fruiting body formation of T. matsutake. Here, we report on the structures of fungal communities associated with the fairy ring of T. matsutake through the pyrosequencing method. Soil samples were collected inside the fairy ring zone, in the fairy ring zone, and outside the fairy ring zone. A total of 37,125 sequencing reads were obtained and 728 to 1,962 operational taxonomic units (OTUs) were observed in the sampling zones. The fairy ring zone had the lowest OTUs and the lowest fungal diversity of all sampling zones. The number of OTUs and fungal taxa inside and outside the fairy ring zone was, respectively, about 2 times and 1.5 times higher than the fairy ring. Taxonomic analysis showed that each sampling zone has different fungal communities. In particular, out of 209 genera total, 6 genera in the fairy ring zone, such as Hemimycena, were uniquely present and 31 genera, such as Mycena, Boletopsis, and Repetophragma, were specifically absent. The results of metagenomic analysis based on the pyrosequencing indicate a decrease of fungal communities in the fairy ring zone and changes of fungal communities depending on the fairy ring growth of T. matsutake.

Characterization of a Novel Alkaline Family VIII Esterase with S-Enantiomer Preference from a Compost Metagenomic Library

  • Lee, Hyun Woo;Jung, Won Kyeong;Kim, Yong Ho;Ryu, Bum Han;Kim, T. Doohun;Kim, Jungho;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.315-325
    • /
    • 2016
  • A novel esterase gene, est7K, was isolated from a compost metagenomic library. The gene encoded a protein of 411 amino acids and the molecular mass of the Est7K was estimated to be 44,969 Da with no signal peptide. Est7K showed the highest identity of 57% to EstA3, which is an esterase from a drinking water metagenome, when compared with the enzymes with reported properties. Est7K had three motifs, SMTK, YSV, and WGG, which correspond to the typical motifs of family VIII esterases, SxxK, Yxx, and WGG, respectively. Est7K did not have the GxSxG motif in most lipolytic enzymes. Three additional motifs, LxxxPGxxW, PLGMxDTxF, and GGxG, were found to be conserved in family VIII enzymes. The results of the phylogenetic analysis and the alignment study suggest that family VIII enzymes could be classified into two subfamilies, VIII.1 and VIII.2. The purified Est7K was optimally active at 40ºC and pH 10.0. It was activated to exhibit a 2.1-fold higher activity by the presence of 30% methanol. It preferred short-length p-nitrophenyl esters, particularly p-nitrophenyl butyrate, and efficiently hydrolyzed glyceryl tributyrate. It did not hydrolyze β-lactamase substrates, tertiary alcohol esters, glyceryl trioleate, fish oil, and olive oil. Est7K preferred an S-enantiomer, such as (S)-methyl-3-hydroxy-2-methylpropionate, as the substrate. The tolerance to methanol and the substrate specificity may provide potential advantage in the use of the enzyme in pharmaceutical and other biotechnological processes.

Molecular Cloning and Characterization of a Novel Cold-Adapted Family VIII Esterase from a Biogas Slurry Metagenomic Library

  • Cheng, Xiaojie;Wang, Xuming;Qiu, Tianlei;Yuan, Mei;Sun, Jianguang;Gao, Junlian
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1484-1489
    • /
    • 2014
  • A novel esterase gene, est01, was successfully unearthed from a biogas digester microbiota metagenomic library. The 1,194 bp est01 gene encodes a protein of 44,804 Da (designated Est01). The amino acid sequence of Est01 shows only moderate (33%) identity to a lipase/esterase. Phylogenetic analysis and biochemical characterization confirmed that Est01 is a new member of family VIII esterases. The purified Est01 from recombinant Escherichia coli BL21 (DE3) showed high hydrolytic activity against short-chain fatty acid esters, suggesting that it is a typical carboxylesterase rather than a lipase. Furthermore, the Est01 was even active at $10^{\circ}C$ (43% activity remained), with the optimal temperature at $20^{\circ}C$, and had a broad pH range from 5.0 to 10.0, with the optimal pH of 8.0. These properties suggest that Est01 is a cold-adaptive esterase and could have good potential for low-temperature hydrolysis application.

Cloning and Characterization of Carboxylesterase (est2R) Gene from Cow Rumen Metagenomic Library

  • Kang, Tae-Ho;Kim, Min-Keun;Kim, Tae-Yang;Kim, Gi-Hwan;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.109-118
    • /
    • 2012
  • The gene encoding an esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est2R) was 2,120 bp in length, encoding a protein of 516 amino acid residues with a calculated molecular weight of 57,286 Da. The molecular weight of the enzyme was estimated to be 57,000 Da by SDS-PAGE. Est2R shared 35.6% amino acid identity with esterase (CAH19079) of uncultured prokaryote. The Est2R was most active at $20-40^{\circ}C$, and showed optimum at $30^{\circ}C$ and pH 8.0. The most activity of Est2R for the different chain length of p-nitrophenyl ester group as substrate was p-nitrophenyl acetate. Moreover, the enzyme was found to be most active without organic solvent, followed by 98% active with ethanol, and the enzyme activity was highly affected by the acetonitrile. The enzyme was significantly inhibited by $Zn^{2+}$ but stimulated by $Ca^{2+}$. So, novel esterase gene est2R is likely to obtain from cow rumen metagenome and supposed to use for industrial purpose.

Characterization of an alkaline esterase from an enriched metagenomic library derived from an oil-spill area

  • Baek, Seung Cheol;Jo, Jeong Min;Jeong, Soo-Mi;Lee, Jae Pil;Lee, Hyun Woo;Kim, Jungho;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.73-79
    • /
    • 2019
  • A novel esterase gene (est7S) was cloned from an enriched metagenomic library derived from an oil-spill area. The gene encoded a protein of 505 amino acids, and the molecular mass of the Est7S was estimated to be 54,512 Da with no signal peptide. Est7S showed the highest identity of 40% to an esterase from a sludge metagenome compared to the characterized enzymes with their properties, although it showed 99% identity to a carboxylesterase in the genome sequence of Alcanivorax borkumensis SK2. Est7S had catalytic triad residues, Ser183, Glu312, and His420, and the GESAG motif in most family VII lipolytic enzymes. Est7S was purified from the crude extract of clone SM7 using Sephacryl S-200 HR and HiTrap Q column chromatographies. The purified Est7S was optimally active at $50^{\circ}C$ and pH 10.0. Est7S showed a high specific activity of 366.7 U/mg protein. It preferred short length esters, particularly p-nitrophenyl acetate, efficiently hydrolyzed R- and S-enantiomers of methyl-3-hydroxy-2-methylpropionate, and glyceryl tributyrate. These properties of Est7S may provide potential merits in biotechnological applications such as detergent and paper processing under alkaline conditions.

Subgingival microbiome in periodontitis and type 2 diabetes mellitus: an exploratory study using metagenomic sequencing

  • Lu, Xianjun;Liu, Tingjun;Zhou, Jiani;Liu, Jia;Yuan, Zijian;Guo, Lihong
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.282-297
    • /
    • 2022
  • Purpose: To explore differences in the subgingival microbiome according to the presence of periodontitis and/or type 2 diabetes mellitus (T2D), a metagenomic sequencing analysis of the subgingival microbiome was performed. Methods: Twelve participants were divided into 4 groups based on their health conditions (periodontitis, T2D, T2D complicated with periodontitis, and generally healthy). Subgingival plaque was collected for metagenomic sequencing, and gingival crevicular fluids were collected to analyze the concentrations of short-chain fatty acids. Results: The shifts in the subgingival flora from the healthy to periodontitis states were less prominent in T2D subjects than in subjects without T2D. The pentose and glucuronate interconversion, fructose and mannose metabolism, and galactose metabolism pathways were enriched in the periodontitis state, while the phosphotransferase system, lipopolysaccharide (LPS) and peptidoglycan biosynthesis, bacterial secretion system, sulfur metabolism, and glycolysis pathways were enriched in the T2D state. Multiple genes whose expression was upregulated from the red and orange complex bacterial genomes were associated with bacterial biofilm formation and pathogenicity. The concentrations of propionic acid and butyric acid were significantly higher in subjects with periodontitis, with or without T2D, than in healthy subjects. Conclusions: T2D patients are more susceptible to the presence of periodontal pathogens and have a higher risk of developing periodontitis. The pentose and glucuronate interconversion, fructose and mannose metabolism, galactose metabolism, and glycolysis pathways may represent the potential microbial functional association between periodontitis and T2D, and butyric acid may play an important role in the interaction between these 2 diseases. The enrichment of the LPS and peptidoglycan biosynthesis, bacterial secretion system, and sulfur metabolism pathways may cause T2D patients to be more susceptible to periodontitis.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

Screening and Isolation of a Gene Encoding 4-Hydroxyphenylpyruvate Dioxygenase from a Metagenomic Library of Soil DNA (토양의 DNA로부터 4-Hydroxyphenylpyruvate Dioxygenase 유전자 탐색 및 분리)

  • Yun, Sang-Soon;Lee, Jung-Han;Kim, Soo-Jin;Kim, Sam-Sun;Park, In-Cheol;Lee, Mi-Hye;Koo, Bon-Sung;Yoon, Sang-Hong;Yeo, Yun-Soo
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.345-351
    • /
    • 2005
  • To access the natural products of uncultured microorganisms, we constructed and screened the metagenomic DNA libraries by using a cosmid vector and DNA inserts isolated directly from soil. Initial screening of the libraries in Escherichia coli resulted in the isolation of several clones that produce a dark brown color when grown in LB medium. One of the positive clones, designed pYS85C, was transposon mutagenized and the DNA surrounding the transposon insertions in cosmids that no longer conferred the production of brown pigment to E. coli was sequenced. Annotation of the pYS85C sequence obtained from the transposon mutagenesis experiment indicated a single 393 amino acid open reading frame (ORF) with a molecular mass of about 44.5 kDa, predicted to be a 4-hydroxyphenylpyruvate dioxygenases (HPPDs), was responsible for the observed brown pigment. In a BLAST search against deposited sequence, the translated protein from this ORF showed moderate-level identity (>60%) to the other known HPPDs and was most conserved in the C-terminal region of the protein. These results show that genes involved in natural product synthesis can be cloned directly from soil DNA and expressed in a heterologous host, supporting the idea that this technology has the potential to provide novel natural products from the wealth of environmental microbial diversity and is a potentially important new tool for drug discovery.