• Title/Summary/Keyword: Metabolomics

Search Result 214, Processing Time 0.021 seconds

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Parabiosis and Blood Exchange Techniques in Aging Research (개체병렬결합(parabiosis)실험모델과 혈액교환을 이용한 노화(aging)연구 분석)

  • Kyung Tae Chung
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.208-215
    • /
    • 2023
  • In recent decades, the field of aging research has progressed from the genetic and cellular levels to in vivo models of blood exchange. Since genes capable of extending the lifespan in C. elegance have been reported, various potential target molecules have been discovered through genomics, proteomics, metabolomics, and transcriptomics. Accordingly, research on the interactions between target molecules has also been increasing. The parabiosis method, in which two experimental animals are surgically combined, was introduced, and a factor that could reverse the aging phenomenon was discovered using this method. The parabiosis method is used to find more accurate and effective aging-reversal factors that could exist in young blood. As more new evidence has been revealed, the parabiosis method has established a new paradigm for aging research. Moreover, a device capable of exchanging blood elaborately in laboratory animals was published in 2022 and presented new results necessary for aging reversal. Since GDF11, was reported, many other anti-aging candidates that are soluble factors in blood, such as β2m, TIMP2, VCAM1, Gpld1, and clusterin, have been discovered. In addition, mcicroglia cells and neuroinflammation have been directly proven to be aging factors. These latest research results were obtained by parabiosis, the newly designed device for plasmapheresis, and injecting young blood or conditioned blood methods. In this review, we discuss the latest research results using the device and young blood administration in old mice.

Analysis of quality characteristics of sugar-soaked raspberry according to storage period (저장 기간에 따른 산딸기 당 침지액의 품질특성 분석)

  • Choi, Seok-Yong;Gu, Suyeon;Ryu, Chung-Ho;Kim, Hyun-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.7-15
    • /
    • 2022
  • Volatile and non-volatile metabolite profiles of sugar-immersed raspberry liquid during different storage periods were analyzed and comparative analysis with their general characteristics, antioxidant activity, and sensory quality was evaluated to better understand the effect of the storage period on the quality of ugar-immersed raspberry liquid. During storage, a browning reaction occurred, resulting in a change in color and the production of volatile compounds. At the beginning of storage, sucrose was completely decomposed into fructose and glucose, and the sweetness was rapidly reduced, but the increase in succinic acid increased the sour taste. Most volatile compounds increased with an increase of the storage period, and especially, the contents of citronellol, octanoic acid, and hexanoic acid, which are known as antioxidants, showed the highest content in 10 day-sample, showing the highest antioxidant activity at this time. Although a further study on bacterial profiles and browning reaction during the storage will be needed, the results of this study showed that the quality of sugar-soaked raspberry extract was significantly affected by the storage period and can be used as basic data for commercialization of ugar-immersed raspberry liquid.

LC/MS-based metabolomics approach for selection of chemical markers by domestic production region of Schisandra chinensis (오미자(Schisandra chinensis)의 국내 산지별 화학적마커 선정을 위한 LC/MS 기반의 대사체학 접근법)

  • In Seon Kim;Seon Min Oh;Ha Eun Song;Doo-Young Kim;Dahye Yoon;Dae Young Lee;Hyung Won Ryu
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.467-476
    • /
    • 2023
  • Schisandra chinensis (S. chinensis) is a deciduous broad-leaved cave plant belonging to the Schisandraceae family and is widely distributed in East Asia including Korea, Japan, China, and Taiwan. It has been reported that the main components contained in S. chinensis include lignan compounds and triterpenoid compounds. To distinguish the characteristics of S. chinensis by production region of Korea, a discriminant was established by performing metabolite profiling and principal component analysis, a multivariate statistical analysis technique. As a result, 16 types of triterpenoids, 9 types of lignan, and 1 type each of flavonoid, phenylpropanoid, and fatty acid were identified. In addition, through multivariate statistical analysis, it was confirmed that the four groups in Danyang, Moongyeong, Geochang, and Pyeongchang were divided, by applying the s-plot model of orthogonal partial least squares discriminant analysis. Biomarkers were identified: lanostane, cycloartane, schiartane triterpenoid, and dibenzocyclo-octadiene lignan were identified as chemical markers, respectively.