• Title/Summary/Keyword: Metabolism study

Search Result 3,803, Processing Time 0.033 seconds

The Effect of Hepatic Ischemia and Reperfusion on Energy Metabolism in Rats

  • Jeong Cheol;Cho, Tai-Soon;Lee, Sun-Mee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.97-97
    • /
    • 1997
  • It was reported that ATP depletion occurs and accelerates cell damage during ischemia and reperfusion. To determine the mechanism of cell damage, the change of energy metabolism in liver was studied during ischemia/reperfusion. The groups were divided into four categories : sham-operated group, ischemia/reperfusion group, and two types of ATP-MgCl$_2$ treatment groups(one was treated during ischemia and the another during reperfusion). Rats were administered intravenously saline or ATP-MgCl$_2$. Rats were anesthetized and blood vessels in the left and median lobes of the liver were occluded. After 60min of ischemia, the clamp at those vessels were removed. After ischemia, one and five hours after reflow, energy metabolites(ATP, ADP, AMP, inosine, adenosine, hypoxanthine, xanthine) in liver were measured with HPLC. To observe mitochondrial function, aterial keton body ratio in blood and mitochondrial glutamate dehydrogenase activity in liver were measured. And lipid peroxidation was measured to evalutate the involvement of free radicals. In this study, ATP and ADP were catabolized to their metabolites(AMP, inosine, adenosine, hypoxanthine, xanthine) during ischemia and they resynthesized ATP and ADP during reperfusion. But total purine base were not restored to level of normal rat. The main source of resynthesizing ATP and ADP was AMP. In both ATP-MgCl$_2$ treated groups, mitochondrial function was protected and lipid peroxidation was significantly reduced. Our findings suggest that ischemia/reperfusion impairs hepatic energy metabolism.

  • PDF

Effects of lead on ATPase activity in the sciatic nerve of Sprague-Dawley rat (랫드의 대퇴 신경중 ATPase 효소활성에 미치는 납의 영향)

  • 정명규
    • Environmental Analysis Health and Toxicology
    • /
    • v.9 no.1_2
    • /
    • pp.1-8
    • /
    • 1994
  • Nerve conduction impairment in lead neuropathy has been empirically linked to altered nerve myo-inositol metabolism. In most cases of neuropathy, abnormal myo-inositol metabolism is associated with abnormal $Na^+/K^+$ATPase provides a potential mechanism to relate defects of the myo-inositol metabolism in the peripheral nerve treated with lead. Therefore, the effect of lead on the rat sciatic nerve $Na^+/K^+$ATPase and other ATPase of sciatic nerve was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 2-wk lead treated neuropathy rats and age-mached controls administered myo-inositol. $Na^+/K^+$ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Lead reduced 50% reduction in the $Na^+/K^+$ATPase activity in homogenates of sciatic nerve. The 50% reduction in the $Na^+/K^+$ ATPase activity was selectively prevented by myo-inositol treatment. This study suggests that the toxic mechanism of the lead on peripheral nerve may be through reduction in $Na^+/K^+$ATPase activity which has been linked to axonal transport slowing in the rat model of lead neuropathy, via direct changes by the perturbation of the intracelluar sodium or potasium level.

  • PDF

Effects of Fasting on Hepatic Metabolism of Sulfur Amino Acids in Rats (절식이 랫트 간의 황함유 아미노산 대사에 미치는 영향)

  • Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.53 no.2
    • /
    • pp.74-77
    • /
    • 2009
  • Food deprivation decreases hepatic glutathione (GSH) levels, which is ascribed to alterations in availability of hepatic cysteine, a rate limiting factor for the GSH synthesis. The present study examines the effects of food deprivation on hepatic metabolism of sulfur amino acid in male rats. In rats fasted for 24 or 48 hours, hepatic GSH levels were decreased from $6.70{\pm}0.16{\mu}mol/g$ liver to $4.02{\pm}0.20$ or $4.06{\pm}0.07{\mu}mol/g$ liver, respectively. Hepatic S-adenosylmethionine levels were also decreased in fasted rats, but S-adenosylhomocysteine levels were increased. Hepatic methionine levels were not changed by food deprivation for 48 hours. On the other hand, hepatic cysteine or taurine levels were increased from $106.2{\pm}4.1$ to $130.0{\pm}2.7$ nmol/g liver or from $2.45{\pm}0.43$ to $5.07{\pm}0.78{\mu}mol/g$ liver, respectively, in 48-hour fasted rats. Activity of cystathionine beta-synthase catalyzed homocysteine to cystathionine, was markedly decreased, but activity of betaine homocysteine methyltransferase was increased in fasted rats, indicating that methylation of homocysteine to methionine is activated. Also activity of cysteine dioxygenase, involved in taurine synthesis, was increased. These results suggested that hepatic methionine levels were maintained in rats fasted for 48 hours through increase in homocysteine methylation, and hepatic GSH may serve as a cysteine supplier reservoir in fasting state.

Effect of Chitosan and N. O-Carboxymethyl Chitosan of Different Sources and Molecular Weights on Lipid Metabolism (급원과 분자량이 다른 Chitosan 과 N, O-Carboxymethyl Chitosan이 지방대사에 미치는 영향)

  • 배계원
    • Journal of Nutrition and Health
    • /
    • v.30 no.7
    • /
    • pp.770-780
    • /
    • 1997
  • This study was performed to investigate the effect of chitosan and NOCC from different sources and of different molecular weights on lipid metabolism. Sprague-Dawley rats were blocked into 26 groups according to body weight, and were raised for 4 weeks. Cadmium chloride was given at the level of 0 or 400 ppm in diet. Various chitosan and NOCC sources were given at the level of 0%(w/w) of diet. Total serum cholesterol and serum triglyceride concentrations were little affected by chitosan and NOCC supplements. However, HDL-cholesterol concentration and HDL : total cholesterol ratio were increased , and liver lipid, cholesterol , and triglyceride concentration were decreased by chitosan and NOCC supplements. The cholesterol and lipid lowering activity depends on fiber sources(crab and shrimp); type (chitosan and NOCC); and molecular weight(low , medium , and high). Among cadmium-free groups, chitosan-fed groups showed greater activity than NOCC -fed groups in lowering cholesterol and lipid levels, and greater fecal excretion of lipids and bile acids. Crab chitosans were more effective in cholesterol and lipid lowering activity than shrimp chitosans. The group fed high molecular weight crab chitosan showed the highest fecal excretion of lipids and bile acids. This indicated that high molecular weight crab chitosan was most effective in interfering with cholesterol and lipid absorption.

  • PDF

Histopathologic investigation of the effects of prostaglandin E2 administered by different methods on tooth movement and bone metabolism

  • Caglaroglu, Murat;Erdem, Abdulvahit
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.118-128
    • /
    • 2012
  • Objective: The aim of this study was to investigate and compare the in vivo effects of prostaglandin E2 (PGE2) administered by different methods on orthodontic tooth movement and bone metabolism macroscopically, histopatologically, and biochemically. Methods: Forty-five young adult New Zealand rabbits were randomly divided into 3 experimental groups (n = 10/group), 1 positive control group (n = 10), and 1 negative control group (n = 5). The experimental rabbits were fitted with springs exerting 20-g reciprocal force on the maxillary incisors and PGE2 (10 ${\mu}g/mL$) was administered by the intravenous, submucosal, or intra ligamentous route aft er appliance insertion and on days 1, 3, 7, and 14 thereafter. All rabbits were sacrificed on day 21 and their premaxillae were resected for histologic evaluation. Results: Tooth movement was observed in the experimental and positive control groups, but the intraligamentous PGE2 group had the highest values of all analyzed parameters, including serum calcium and phosphorus levels and osteoclastic and osteoblastic populations (p < 0.001). Conclusions: Sub mucosal and intraligamentous PGE2 administration significantly increases orthodontic tooth movement and bone metabolism, but the intraligamentous route seems to be more effective.

Mean Platelet Volume Could be a Possible Biomarker for Papillary Thyroid Carcinomas

  • Baldane, Suleyman;Ipekci, Suleyman H;Sozen, Mehmet;Kebapcilar, Levent
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2671-2674
    • /
    • 2015
  • Thyroid cancer is the most prevalent endocrine cancer and is evident in nearly 5% of thyroid nodules. The correlation between mean platelet volume (MPV) and many other cancer types has been investigated previously. However, the correlation between papillary thyroid carcinoma (PTC) and MPV has not yet been studied in detail. The aim of this study was to examine whether MPV would be a useful inflammatory marker to differentiate PTC patients from cases of benign goiter and healthy controls. Preoperative MPV levels in patients with PTC were found to be significantly higher when compared with benign goiter patients and healthy controls ((respectively, 8.05 femtoliter (fl), 7.57 fl, 7.36 fl, p=0.001). After surgical treatment of PTC patients, a significant decrease in MPV levels was seen (8.05 fl versus 7.60 fl, p=0.005). ROC analysis suggested 7.81 as the cut-off value for MPV (AUC=0.729, sensitivity 60%, specificity 80%). In conclusion, maybe changes in MPV levels can be used as an easily available biomarker for monitoring the risk of PTC in patients with thyroid nodules, enabling early diagnosis of PTC.

Improvements Caused by Chitosan, Sericin and Collagen Peptide Extract Complexes on Lipid Metabolism in Dyslipidemia (키토산과 세리신 및 콜라겐 펩타이드 추출 혼합물이 이상지질혈증의 지질대사 개선에 미치는 영향)

  • Kim, Han-Soo;Jang, Seong-Ho;Yoon, Myung-Joo;Kang, Jin-Soon;Choi, Woo-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1021-1030
    • /
    • 2011
  • The objective of this study was to assess improvements caused by chitosan, sericin and collagen peptide extract complexes (1:1:1, w/w/w, CSC-F-005) in lipid concentrations in the sera of dyslipidemic rats (SD strain) fed on experimental diets for 5 weeks. Serum concentrations of total cholesterol, HDL-cholesterol, ratio of HDL-cholesterol concentration to total cholesterol, atherosclerotic index, LDL-cholesterol, free cholesterol, cholesteryl ester, triglyceride, phospholipid and blood glucose were effective on the metabolic regulation of dyslipidemic rats. The activities of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase in serum were remarkably lower in the extract complexes (CSC-F-005) than in the dyslipidemic model. From the above results shows that CSC-F-005 extract complexes were effective on the improvement of the lipid metabolism in sera of dyslipidemic rats.

Troglitazone Regulates white Adipose Tissue Metabolism by Activating Genes Involved in Fatty Acid ${\beta}$-Oxidation in High Fat Diet-fed C57BL/6J Mice

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.319-327
    • /
    • 2006
  • This study aimed to determine whether troglitazone stimulates genes related to fatty acid ${\beta}$-oxidation, leading to modulation of white adipose tissue (WAT) metabolism in high fat diet-fed mice. Female C57BL/6J mice were randomly divided into two groups (n=10/group). After they received either a high fat diet or the same high fat diet supplemented with troglitazone for 4 weeks, the effects of troglitazone on gene expression and physiology of WAT were measured using Northern, histological and serological analyses. Administration of troglitazone induced the expression of genes involved in mitochondrial and peroxisomal fatty acid ${\beta}$-oxidation in mesenteric WAT. Troglitazone also significantly increased uncoupling protein 2 mRNA levels. The changes in WAT gene expression were accompanied by reductions in circulating levels of free fatty acids and triglycerides as well as glucose and insulin. Histological studies showed that troglitazone treatment decreased the average size of adipocytes in mesenteric WAT. These results suggest that troglitazone-stimulated WAT expression of genes associated with fatty acid ${\beta}$-oxidation regulates WAT metabolism of high fat diet-fed mice, contributing to improvement of insulin sensitivity.

  • PDF

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

The Toxicokinetic Characteristics of Korean Traditional Medicines (한약의 독물동태학적 특성)

  • Park, Yeong-Chul;Shin, Heon-Tae;Lee, Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.15 no.2
    • /
    • pp.1-19
    • /
    • 2011
  • Toxicokinetics of Korean Traditional Medicines(TKM) is the description of what rate TKM will enter the body and what happens to it once it is in the body in terms of toxicology. However, it is not easy to understand TKM toxicokinetics because of various factors such as a mixture of 2-30 kinds of herbal materials containing thousands of chemicals, and complex chemical properties. For these reasons, little is known about toxicokinetics of TKM. This study was aimed to characterize and review the absorption, distribution and metabolism of korean traditional medicines in a view of toxicokinetics. For this aim, some of korean traditional medicines were reviewed on a basis of drug-drug interaction, biotransformation and intestinal metabolisms by bacteria. As the factors affecting mainly on toxicokinetics of TKM, individual herbal material's degree of lipophilicity and metabolic rate, and decoction components according to different kinds of herbal materials were considered. Other factors such as intestinal pH and bacterial activity for metabolism affecting on TKM toxicokinetics, especially in small intestine. It would be a better way for improving the adverse or poor effects caused by TCM if the factors affecting on toxicokinetics of TKM is considered.