• Title/Summary/Keyword: Metabolism Modification

Search Result 103, Processing Time 0.024 seconds

Enhanced Expression of High-affinity Iron Transporters via H-ferritin Production in Yeast

  • Kim, Kyung-Suk;Chang, Yu-Jung;Chung, Yun-Jo;Park, Chung-Ung;Seo, Hyang-Yim
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.82-87
    • /
    • 2007
  • Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplements. The modification of cellular iron metabolism, which involved the increased expression of high-affinity iron transport genes (FET3 and FTR1), was detected via Northern blot analysis. The findings may provide some evidence of cytosolic iron deficiency, as the genes were expressed transcriptionally under iron-deficient conditions. According to our results examining reactive oxygen species (ROS) generation via the fluorescence method, the ROS levels in YGH2 were decreased compared to the control. It suggests that the expression of active H-ferritins reduced the content of free iron in yeast. Therefore, present results may provide new insights into the regulatory network and pathways inherent to iron depletion conditions.

Determination of the Kinetic Properties of Platycodin D for the Inhibition of Pancreatic Lipase Using a 1,2-Diglyceride-Based Colorimetric Assay

  • Zhao, Hai Lin;Kim , Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1048-1052
    • /
    • 2004
  • A 1, 2-diglyceride-based multi-step colorimetric assay to measure the pancreatic lipase activity was applied for the determination of the kinetic profiles of the lipase inhibition with a slight modification and the validity verification. With this assay method, our study revealed that platycodin D, one of major constituents of Platycodi Radix, inhibits the pancreatic lipase activity in a competitive type, with the value of $K_I$ being 0.18${\pm}$0.02 mM. In addition, PD has affected the values of $K_{m,app}\;and\;K_{cat}/K_m$ in a dose- dependent manner. The results shed a meaningful light on how PD mediates lipid metabolism in the intestinal tracts. On the other hand, since the revised assay is sensitive, rapid, and does not affect the accuracy to the kinetic properties, it is applicable not only to evaluation of the kinetic properties of the pancreatic lipase, but also to highthroughput screening of pancreatic lipase activity.

Application of nanochitosan in food industry: a review (나노키토산의 식품분야에서의 이용)

  • Yu, Ji Young;Ko, Jung A;Park, Hyun Jin;Kim, Hyun Woo
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Recently, chitosan has increased attention in commercial applications in the food industry in terms of its biocompatibility and nontoxicity. In particular, chitosan has been used as a good hosting material for producing nanoparticles due to its unique property of ionic gelation. Chitosan has disadvantages such as low solubility at physiological pH, causing the metabolism of core material in the intestine and gastric juice. To overcome these limitations, various chitosan derivatives such as carboxylated, thiolated, and acylated chitosan have been studied. This review focuses on the changes in the physicochemical properties of chitosan nanoparticles with the introduction of hydrophobic groups, the application of functional nanocapsules as coatings, and their applicability in the food sector. The physicochemical modification of chitosan is expected to be an attractive research field for the development of chitosan applications for food as well as for improving bioavailability in functional food.

Clinical Perspectives on Obesity in Children and Adolescents (소아청소년 비만의 임상적 이해)

  • Kyung Hee Park
    • Archives of Obesity and Metabolism
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2024
  • The prevalence of obesity in children and adolescents is increasing worldwide. Obesity in children and adolescents not only increases the risk of transitioning to obesity in adulthood but also increases the risk of cardiometabolic diseases such as high blood glucose, high blood pressure, dyslipidemia, fatty liver, and hyperinsulinemia during childhood. The goal of treating obesity in children and adolescents is not to focus on weight loss but to help children reach a healthy weight while maintaining normal growth appropriate for their age and sex. To achieve this goal, regular physical activity and exercise, dietary modification, improvement of obesity-prone environmental factors, and behavioral changes are required for a healthy lifestyle. If appropriate weight control is not achieved through lifestyle modifications, pharmacotherapy may be considered for adolescents with severe obesity aged 12 and above. Recent clinical trials have reported the efficacy and safety of pharmacotherapy in severely obese adolescents. Currently, two medications can be prescribed in Korea for patients with obesity aged 12 and above: Orlistat and Liraglutide. However, despite effective weight control through drug treatment, body weight may increase again after treatment discontinuation. Therefore, it is crucial to evaluate adherence to health behaviors during visits and continue to educate on lifestyle modifications, even during pharmacotherapy, to minimize weight regain.

ATHEROSCLEROSIS, CHOLESTEROL AND EGG - REVIEW -

  • Paik, I.K.;Blair, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-25
    • /
    • 1996
  • The pathogenesis of atherosclerosis can not be summarized as a single process. Lipid infiltration hypothesis and endothelial injury hypothesis have been proposed and investigated. Recent developments show that there are many points of potential interactions between them and that they can actually be regarded as two phases of a single, unifying hypothesis. Among the many risk factors of atherosclerosis, plasma homocysteine and lipoprotein(a) draw a considerable interest because they are independent indicators of atherogenicity. Triglyceride (TG)-rich lipoproteins (chylomicron and VLDL) are not considered to be atherogenic but they are related to the metabolism of HDL cholesterol and indirectly related to coronary heart disease (CHD). LDL can of itself be atherogenic but the oxidative products of this lipoprotein are more detrimental. HDL cholesterol has been considered to be a favorable cholesterol. The so-called 'causalist view' claims that HDL traps excess cholesterol from cellular membranes and transfers it to TG-rich lipoproteins that are subsequently removed by hepatic receptors. In the so-called 'noncausalist view', HDL does not interfere directly with cholesterol deposition in the arterial wall but instead reflects he metabolism of TG-rich lipoproteins and their conversion to atherogenic remnants. Approximately 70-80% of the human population shows an effective feedback control mechanism in cholesterol homeostasis. Type of dietary fat has a significant effect on the lipoprotein cholesterol metabolism and atherosclerosis. Generally, saturated fatty acids elevate and PUFA lower serum cholesterol, whereas MUFA have no specific effect. EPA and DHA inhibit the synthesis of TG, VLDL and LDL, and may have favourable effects on some of the risk factors. Phospholipids, particularly lecithin, have an antiatherosclerotic effect. Essential phospholipids (EPL) may enhance the formation of polyunsaturated cholesteryl ester (CE) which is less sclerotic and more easily dispersed via enhanced hydrolysis of CE in the arterial wall. Also, neutral fecal steroid elimination may be enhanced and cholesterol absorption reduced following EPL treatment. Antioxidants protect lipoproteins from oxidation, and cells from the injury of toxic, oxidized LDL. The rationale for lowering of serum cholesterol is the strong association between elevation of plasma or serum cholesterol and CHD. Cholesterol-lowing, especially LDL cholesterol, to the target level could be achieved using diet and combination of drug therapy. Information on the link between cholesterol and CHD has decreased egg consumption by 16-25%. Some clinical studies have indicated that dietary cholesterol and egg have a significant hypercholesterolemic effect, while others have indicated no effect. These studies differed in the use of purified cholesterol or cholesterol in eggs, in the range of baseline and challenge cholesterol levels, in the quality and quantity of concomitant dietary fat, in the study population demographics and initial serum cholesterol levels, and clinical settings. Cholesterol content of eggs varies to a certain extent depending on the age, breed and diet of hens. However, egg yolk cholesterol level is very resistant to change because of the particular mechanism involved in yolk formation. Egg yolk contains a factor of factors responsible for accelerated cholesterol metabolism and excretion compared with crystalline cholesterol. One of these factors could be egg lecithin. Egg lecithin may not be as effective as soybean lecithin in lowering serum cholesterol level due probably to the differences of fatty acid composition. However, egg lecithin may have positive effects in hypercholesterolemia by increasing serum HDL level and excretion of fecal cholesterol. The association of serum cholesterol with egg consumption has been widely studied. When the basal or control diet contained little or no cholesterol, consumption of 1 or 2 eggs daily increased the concentration of plasma cholesterol, whereas that of the normolipemic persons on a normal diet was not significantly influenced by consuming 2 to 3 eggs daily. At higher levels of egg consumption, the concentration of HDL tends to increase as well as LDL. There exist hyper-and hypo-responders to dietary (egg) cholesterol. Identifying individuals in both categories would be useful from the point of view of nutrition guidelines. Dietary modification of fatty acid composition has been pursued as a viable method of modifying fat composition of eggs and adding value to eggs. In many cases beneficial effects of PUFA enriched eggs have been demonstrated. Generally, consumption of n-3 fatty acids enriched eggs lowered the concentration of plasma TG and total cholesterol compared to the consumption of regular eggs. Due to the highly oxidative nature of PUFA, stability of this fat is essential. The implication of hepatic lipid accumulation which was observed in hens fed on fish oils should be explored. Nutritional manipulations, such as supplementation with iodine, inhibitors of cholesterol biosynthesis, garlic products, amino acids and high fibre ingredients, have met a limited success in lowering egg cholesterol.

Insulin-like Growth Factor-I Induces FABPpm Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I 이 FABPpm과 FAT/CD36 발현에 미치는 영향)

  • Kim, Hye Jin;Yoon, Hae Min;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1098-1102
    • /
    • 2015
  • FABPpm (plasma membrane-bound fatty acid binding protein ) is highly expressed in skeletal muscle. The principal role of this protein is modulating fatty acid uptake and metabolism. The influence of insulin-like growth factor-I (IGF-I), which is a major regulator of skeletal muscle cells, on FABPpm in skeletal muscle cells has not been investigated. To determine the effect of IGF-I on the expression of FABPpm, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I for different times. IGF-I increased the expression of FABPpm in a time-dependent manner. The mRNA level of FABPpm was measured by real-time quantitative PCR to determine whether the IGF-1-induced induction of FABPpm was regulated pretranslationally. The IGF-I treatment resulted in very rapid induction of the FABPpm mRNA transcript in the C2C12 myotubes. After 24 and 48 hr of the IGF-I treatment, FABPpm mRNA increased 130 and 179%, respectively. The increase in the protein expression returned to control levels after 72 hr of the IGF-I treatment, suggesting that IGF-1 regulated the FABPpm gene pretranslationally in skeletal muscle cells. This is the first evidence that IGF-I has a modulatory effect on the expression of FABPpm. In conclusion, IGF-I induced rapid transcriptional modification of the FABPpm gene in C2C12 skeletal muscle cells and exerted modulatory effects on FABPpm.

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes (C2C12 myotube에서 Insulin-like growth factor-I 이 FATP1 발현에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1284-1290
    • /
    • 2014
  • Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants (곡물 및 사료오염 데옥시니발레놀 및 대사체에 의한 인축질환 연계 생체지표 및 바이오모니터링)

  • Moon, Yuseok;Kim, Dongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.

Flower Color Modification by Manipulating Flavonoid Biosynthetic Pathway (플라보노이드 대사 조절을 통한 화색 변경)

  • Lim, Sun-Hyung;Kim, Jae-Kwang;Kim, Dong-Hern;Sohn, Seong-Han;Lee, Jong-Yeol;Kim, Young-Mi;Ha, Sun-Hwa
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.511-522
    • /
    • 2011
  • Flower color is one of the main target traits in the flower breeding. Recently, technological advances in genetic engineering have been successfully reported the flower colors, such as blue roses and blue carnations that are impossible to develop by traditional breeding. Accumulated knowledge-based approaches for flavonoid biosynthesis enabled to introduce novel and unique colors into flowers. These flower color modifications have been made through the regulation of flavonoid metabolic pathway - control of endogenous gene expression and introduction of foreign genes to produce novel and specific flavonoids - and the introduction of transcription factors that are known to regulate sets of genes being involving in the flavonoid biosynthetic pathway. More empirical regulation of the flavonoids metabolism requires the understanding for regulatory mechanism of intrinsic flavonoids depending on the flower crops and the very sophisticated control of flavonoid metabolic flow. In this review, we summarized successful examples of flower color modification. It might be useful to deduce the strategy for the creation of exquisite colors in flower plants.