• 제목/요약/키워드: Metabolic responses

Search Result 241, Processing Time 0.071 seconds

Nutritional Metabolomics (영양 대사체학)

  • Hong, Young-Shick
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • Metabolomics is the study of changes in the metabolic status of an organism as a consequence of drug treatment, environmental influences, nutrition, lifestyle, genetic variations, toxic exposure, disease, stress, etc, through global or comprehensive identification and quantification of every single metabolite in a biological system. Since most chronic diseases have been demonstrated to be linked to nutrition, nutritional metabolomics has great potential for improving our understanding of the relationship between disease and nutritional status, nutrient, or diet intake by exploring the metabolic effects of a specific food challenge in a more global manner, and improving individual health. In particular, metabolite profiling of biofluids, such as blood, urine, or feces, together with multivariate statistical analysis provides an effective strategy for monitoring human metabolic responses to dietary interventions and lifestyle habits. Therefore, studies of nutritional metabolomics have recently been performed to investigate nutrition-related metabolic pathways and biomarkers, along with their interactions with several diseases, based on animal-, individual-, and population-based criteria with the goal of achieving personalized health care in the future. This article introduces analytical technologies and their application to determination of nutritional phenotypes and nutrition-related diseases in nutritional metabolomics.

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

Selective Activation of Mitogen-Activated Protein (MAP) Kinase During the Progression of Renal Disease

  • Park, Sang-Joon;Jeong, Kyu-Shik;Jeong, Tae-Sook;Bok, Song-Hae;Lee, Cha-Soo
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2000.09a
    • /
    • pp.19-19
    • /
    • 2000
  • Most renal diseases progress by consecutive cell responses such as hypertrophy, hyperplsia, proliferation, defferentiation, sclerosis, fibrosis and other cellular degenerative process. These cellular responses are mediated by the activation of various mitogens such as vasoconstrictors, growth factors, hormone, genotoxins and cytokines through mechanical, hemodynamic, immunological injury as well as metabolic abnormality. (omitted)

  • PDF

Changes in Structural and Functional Responses of Bacterial Communities under Different Levels of Long-Term Compost Application in Paddy Soils

  • Samaddar, Sandipan;Han, Gwang Hyun;Chauhan, Puneet Singh;Chatterjee, Poulami;Jeon, Sunyoung;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.292-296
    • /
    • 2019
  • Soils amended for long-term with high levels of compost demonstrated greater abundance of bacterial members of the phylum Bacteroidetes whereas a decreasing trend in the relative abundance of phylum Acidobacteria was noted with increasing levels of compost. Metabolic profiles predicted by PICRUSt demonstrated differences in functional responses of the bacterial community according to the treatments. Soils amended with lower compost levels were characterized by abundance of genes encoding enzymes contributing to membrane transport and cell growth whereas genes encoding enzymes related to protein folding and transcription were enriched in soils amended with high levels of compost. Thus, the results of the current study provide extensive evidence of the influence of different compost levels on bacterial diversity and community structure in paddy soils.

Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization

  • Gap Ryol Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.4.1-4.15
    • /
    • 2023
  • Th cells, which orchestrate immune responses to various pathogens, differentiate from naive CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Effcts of Dangkiyeumja(當歸飮子) Water Extract of anti-allergic responses and on the Functions of Murine Immunocytes (當歸飮子 水抽出液이 抗ALLERGY 反應과 MOUSE의 免疫細胞機能에 미치는 影響)

  • No, Seok-Seon;Lee, Gi-Nam
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.4 no.1
    • /
    • pp.23-42
    • /
    • 1991
  • This study were done to know the effects of Dangkiyeumja on the in vivo and in vitro immune responses of mice. The recipes of Dangkiyeumja used in this study enhanced such, cellular functions of immunocytes as phagocytic capacity of macrophages, rossett-eforming abilities of splenocytes and metabolic activities of lymphocytes, However, the same recipes decreased the formation of such reactive oxygen intermediates(ROI) as superoxide and hydrogenperoxide from the macrophages. The effects of the same recipes on the in vim immune responses was suppressive on the cellular immune response(CIR)measured by delayed-type hypersensitivity against dinitrofluorobenzene and mildly enhancing for the humoral immune response measured by antibody production against sheep red blood cells. The results of this study could be summarized as follow: 1. Administration of Dangkiyeumja enhanced the phagocytic activity of the murine macrophage. 2. Administration of Dangkiyeumja decreased the formation of ROI in the murine macrophage 3. Administration of Dangkiyeumja increased the number of the splenic rotte forming cells in the mouse. 4. Administration of DangKiyeumja did not effect the antibody production against sheep red blood cells. 5. Administration of Dangkiyeumja depressed the delayed-type hypersenitivity against dinitrofluoro benzene in the mouse. The result of this study suggest that Dangkiyeumja could ameliorate the hypersensitivity reactions by reducing the formation of ROI and decreasing the CIR without affecting the other functions of immunocytes.

  • PDF

Differential responses of two rice varieties to salt stress

  • Ghosh, N.;Adak, M.K.;Ghosh, P.D.;Gupta, S.;Sen Gupta, D.N.;Mandal, C.
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.89-103
    • /
    • 2011
  • Two rice varieties, viz. Nonabokra and Pokkali, have been evaluated for their responses to salinity in terms of some physiological and biochemical attributes. During the exposure to salinity (200 mM concentration of sodium chloride for 24, 48, and 72 h), a significant increase in sodium was recorded which was also concomitant with the changes of other metabolic profiles like proline, phenol, polyamine, etc. The protein oxidation was significantly increased and also varied between the two cultivars. The changes in activities of anti-oxidative enzymes under stress were significantly different to the control. The detrimental effects of salinity were also evident in terms of lipid peroxidation, chlorophyll content, protein profiles, and generation of free radicals; and these were more pronounced in Pokkali than in Nonabokra. The assessment and analysis of these physiological characters under salinity could unravel the mechanism of salt responses revealed in this present study and thus might be useful for selection of tolerant plant types under the above conditions of salinity.