• Title/Summary/Keyword: Metabolic ratio

Search Result 644, Processing Time 0.026 seconds

Effects of Crude Protein and Phytase in the Diet on Growth Performance and Excretion Contents of Nitrogen and Phosphorus in Broiler Chicks (사료 내 단백질 및 Phytase가 육계 초생추의 생산성 및 분변 내 질소, 인 함량에 미치는 영향)

  • Woo-Do Lee;Jiseon Son;Hyun-Soo Kim;Hee-Jin Kim;Yeon-Seo Yun;Hwan Ku Kang;Woncheoul Park;Han Ha Chai;Eui-Chul Hong
    • Korean Journal of Poultry Science
    • /
    • v.50 no.2
    • /
    • pp.101-108
    • /
    • 2023
  • This study was conducted to investigate the appropriate levels of crude protein (CP) and phytase in the diet of broiler chicks in order to reduce nitrogen and phosphorus contents in feces while maintaining performance of broilers. Six hundred forty-eight 1-day-old male broilers (41.9±0.91 g) had a total of 3 × 3 complex factor of 3 levels of CP (22%, 21%, 20%) and 3 levels of phytase (1,000, 800, 500 FTU/kg) in the diet. Divided into 9 treatments, 4 replications per treatment, 18 birds per replication, were completely randomly assigned and reared in a metabolic cage for 7 days. Seven-day-old body weight (BW) and body weight gain (BWG) of broilers were significantly lower at CP 20% treatment (P<0.05), and feed conversion ratio (FCR) was significantly lower at CP 21% and phytase 800 FTU/kg treatment (P<0.05). Nitrogen and phosphorus contents in chicken excreta were significantly lower in CP 20% and phytase 500 FTU/kg treatment, respectively (P<0.05). Interactions between CP and phytase in the feed were shown for nitrogen and phosphorus in feces (P<0.05). In conclusion, considering the broiler performance and excretion contents of nitrogen and phosphorus, it is thought that CP and phytase levels of broiler chicks diet can be reduced by 21% and 800 FTU/kg, respectively.

Research and Development Trends on Omega-3 Fatty Acid Fortified Foodstuffs (오메가 3계 지방산 강화 식품류의 연구개발 동향)

  • 이희애;유익종;이복희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.161-174
    • /
    • 1997
  • Omega-3 fatty acids have been major research interests in medical and nutritional science relating to life sciences since after the epidemiologic data on Green3and Eskimos reported by several researchers clearly showed fewer per capita deaths from heart diseases and a lower incidence of adult diseases. Linolenic acid(LNA) is an essential fatty acid for human beings as well as linoleic acid(LA) due to the fact that vertebrates lack an enzyme required to incorporate a double bond beyond carbon 9 in the chain. In addition the ratio of omega-6 and 3 fatty acids seems to be important in terms of alleviation of heart diseases since LA and LNA competes for the metabolic pathways of eicosanoids synthesis. High consumption of omega-3 fatty acids in seafoods may control heart diseases by reducing blood cholesterol, triglyceride, VLDL, LDL and increasing HDL and by inhibiting plaque development through the formation of antiaggregatory substances like PGI$_2$, PGI$_3$ and TXA$_3$ metabolized from LNA. Omega 3 fatty acids also play an important role in neuronal developments and visual functioning, in turn influence learning behaviors. Current dietary sources of omega-3 fatty acids are limited mostly to seafoods, leafy vegetables, marine and some seed oils and the most appropriate way to provide omega-3 fatty acids is as a part of the normal dietary regimen. The efforts to enhance the intake of omega-3 fatty acids due to several beneficial effects have been made nowadays by way of food processing technology. Two different ways can be applied: one is add Purified and concentrated omega-3 fatty acids into foods and the other is to produce foods with high amounts of omega-3 fatty acids by raising animals with specially formulated feed best for the transfer of omega-3 fatty acids. Recently, items of manufactured and marketed omega-3 fatty acids fortified foodstuffs are pork, milk, cheese, egg, formula milk and ham. In domestic food market, many of them are distributed already, but problem is that nutritional informations on the amounts of omega-3 fatty acids are not presented on the labeling, which might cause distrust of consumers on those products, result in lower sales volumes. It would be very much wise if we consume natural products, result in lower sales volumes. It would be very much wise if we consume natural products high in omega-3 fatty acids to Promote health related to many types of adult diseases rather than processed foods fortified with omega-3 fatty acids.

  • PDF

Effects of Crude Protein Levels in Total Mixed Rations on Dry Matter Intake, Digestibility and Nitrogen Balance in Early Pregnant Korean Black Goats (섬유질배합사료 내 조단백질 수준이 임신초기 흑염소의 건물섭취량, 소화율 및 질소출납에 미치는 영향)

  • HwangBo, Soon;Choi, Sun-Ho;Lee, Sung-Hoon;Kim, Sang-Woo;Kim, Young-Keun;Sang, Byung-Don;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.2
    • /
    • pp.93-100
    • /
    • 2007
  • This study was conducted to determine the effects of different levels (10, 12 and 15%) of crude protein (CP) in total mixed ration (TMR) on dry matter intake, digestibility and nitrogen balance of Korean black goats in the stage of early pregnancy and to obtain information on their optimal dietary levels of CP. In the present study, 12 Does of Korean black goats in the early pregnancy were allotted to four unreplicated groups by dietary level of CP and then they were housed in individual metabolism cages with completely randomized design throughout 30 days with 20 days adaptation and 10 days collection periods. Does in Control were fed a conventional diet and does in TMR10, TMR12 and TMR15 were fed a diet adjusted to about 10, 12 and 15% CP, respectively. Dry matter(DM) contents ranged from 89 to 91% in treatments. There were no differences fur fiber contents among three CP levels of TMR, showing that ADF and NDF had 18.57 to 19.85, and 53.41 to 54.80, respectively. Crude protein contents for three TMR treaements had 10.61, 12.15 and 14.97%, respectively. However, non-fibrous carbohydrate (NFC) contents decreased with increasing CP levels in treatments. Meanwhile, Intakes of DM, nutrients and digestible nutrients were significantly (p<0.05) higher in TMR15 and control than in TMR10 and TMR12. Moreover, DM intake per metabolic body weight and theit ratio per body weight was significantly (p<0.05) higher for control and TMR15 than other treatments. DM digestibility was not significantly different among treatments, but ether extract digestibility of treatments was significantly (p<0.05) higher than that of control, but there was no significant difference among treatments. Nitrogen retention significantly (p<0.05) increased with increasing CP levels in TMR, and TMR15 was highest among treatments. Our results showed that the increasing CP levels in TMR increased DM intake and nitrogen retention and suggested that the optimal dietary CP levels under TMR feeding system in early pregnant Korean black goats could be estimated for at least 15%.

Changes of the blood chemistry, lipid and protein components in blood and liver tissue of the rat after oral combined administration of caffeine, iron and vitamin E (Caffeine, 철분 및 vitamin E 혼합투여시 rat의 혈액과 간조직내에서 혈액화학성분과 지질 및 단백질 구성성분의 변화)

  • Do, Jae-cheul;Huh, Rhin-sou
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.577-598
    • /
    • 1996
  • This study was conducted to identify the effects of caffeine or combinations of caffeine and iron or vitamin E on the lipid and protein components or blood chemistry levels of the serum as well as the total homogenate, mitochondrial and microsomal fraction of the rat(Sprague-Dawley, female) liver. Chronic test were conducted to determine those effects. The chronic test was conducted by dividing rats into 5 groups according to the type of drugs and dosages administrated as follows; the control(group A), and group B was given 25mg/kg caffeine orally once daily for 30 days, group C was given 50mg/kg caffeine orally once daily for 30 days, group D was given 25mg/kg caffeine and orally ferric chloride once daily for 30 days and group E was given 25mg/kg caffeine and 25mg/kg vitamin E once daily for 30 days. The concentrations of glucose, urea nitrogen, uric acid, creatinine, total protein, albumin, A/G ratio, triglyceride, total cholesterol, HDL-cholesterol, free fatty acid, phospholipid as well as the activities of alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP) were measured in the serum of each experimental groups. The concentrations of the carbonyl group and malondiaidehyde(MDA) and the patterns of the SDS-PAGE(Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis) and fatty acid compositions in free fatty acids and phospholipids were analyzed to determine the oxidative damages and metabolic changes on the lipid and protein components in the serum, and total homogenate, mitochondrial and microsomal fractions of the rat liver. The results obtained from this study were summarized as follows; 1. Body weights of groups B, C, D and E were significantly decreased(p < 0.01) in comparison with that of the control in the chronic test. 2. The concentrations of serum glucose in groups B(124.5mg/dl), C(130.1mg/dl), D(122.1mg/dl), E(119.3mg/dl) were significantly higher(p < 0.01) in comparison to that of the control(101.5mg/dl). But, there were no significant differences in the concentrations of urea nitrogen, uric acid, creatinine, total protein, albumin and A/G ratio in comparison to that of the control. 3. The concentrations of total cholesterol and HDL-cholesterol in serum of groups B(69.6, 53.4mg/dl), C(73.0, 56.3mg/dl), D(68.9, 51.1mg/dl) and E(68.2, 51.3mg/dl) were significantly higher(p < 0.01) in comparison to that of the control(52.6, 38.8mg/dl). On the other hand, the concentrations of triglyceride in serum of groups B(45.0mg/dl), C(40.4mg/dl), D(33.8mg/dl) and E(47.2mg/dl) were significantly lower(p < 0.01) in comparison to that of the control(66.2mg/dl). There were no significant differences in the activities of ALT, AST and ALP in comparison to that of the control. 4. The concentrations of free fatty acid and phospholipid in serum of groups B(45.7, 154.4mg/dl), C(50.0, 167.2mg/dl), D(52.5, 148.4mg/dl) and E(41.1, 159.2mg/dl) were higher(p < 0.01) in comparison to that of the control(35.2, 125.3mg/dl). And the concentrations of the carbonyl group and malondialdehyde in serum of group D(1.82, 0.52nM/mg protein) were significantly higher(p < 0.01) in comparison to the control(1.53nM/mg protein). 5. The concentrations of carbonyl group in total homogenate, mitochondrial and microsomal fraction of group D(1.45, 0.94, 1.67nM/mg protein) were significantly higher (p < 0.01) in comparison to the control(1.16, 0.66, 1.27nM/mg protein). And the concentrations of malondialdehyde in the total homogenate, mitochondrial and microsomal fraction of group D(6.70, 6.10, 1.36nM/mg protein) were significantly higher(p < 0.01) in comparison to the control(5.17, 3.64, 0.68nM/mg protein). 6. As the analytical results of the fatty acid compositions of free fatty acid in serum, the proportions of stearic acid and arachidonic acid of groups B(16.52, 12.62%), C(17.52, 15.18%), D(19.73, 13.47%) and E(17.62, 13.28%) were significantly higher(p < 0.01) in comparison to the control(14.75, 7.88%), but the proportions of oleic acid and linoleic acid of groups B(12.97, 32.59%), C(10.88, 31.23%), D(12.37, 30.66%) and E(11.95, 32.41%) were significantly lower(p < 0.01) in comparison to the control(16.44, 35.12%). Otherwise, as the results of the fatty acid compositions of phospholipid in serum, the proportions of stearic acid and arachidonic acid of groups B(39.37, 16.39%), C(40.63, 17.83%), D(42.73, 15.39%) and E(39.16, 15.70%) were significantly higher(p < 0.01) in comparison to the control(37.74, 14.24%), but the proportions of oleic acid and linoleic acid of groups B(4.03, 14.38%), C(3.54, 12.38%), D(4.52, 11.68%) and E(4.29, 13.64%) were significantly lower(p < 0.01) in comparison to the control(5.53, 16.14%). 7. As the analytical results of the fatty acid compositions of free fatty acid in total homogenate, mitochondrial and microsomal fraction of liver, the proportions of oleic acid of groups B(7.8**, 8.73**, 6.88%) and C(6.89**, 7.75**, 6.58%) were lower(**:p < 0.01) in comparison to the control(8.67, 10.08, 7.81%), but the proportions of arachidonic acid of group C(22.62, 19.79, 23.71%) were significantly higher(p < 0.01) in comparison to the control(20.93, 18.47, 22.24%). And the proportions of palmitic acid of group D(25.95**, 26.16, 26.34**%) were significantly higher(**:p < 0.01) in comparison to the control(24.43, 25.42, 23.34%). In addition, the proportions of linoleic acid of group D(23.43, 25.02, 23.95%) were also significantly higher(p < 0.01) in comparison to the control(22.17, 23.75, 21.26%). The proportions of stearic acid of group D(19.87, 19.76**%) in mitochondrial and microsomal fraction were lower(**:p < 0.01) in comparison to the control(21.01, 24.18%), and the proportions of stearic acid of group E(16.71*, 19.65**%) in mitochondrial and microsomal fraction were significantly lower(**:p < 0.01, *:p < 0.05) in comparison to the control(21.01, 24.18%), and the proportions of linoleic acid of group E(25.04, 29.20, 26.48%) in total homogenate, mitochondria and microsome were significantly higher(p < 0.01) in comparison to the control(22.17, 23.75, 21.26%). 8. As the results of the fatty acid compositions of phospholipid in total homogenate, mitochondrial and microsomal fraction of liver, the proportions of palmitic acid of group D(17.58**, 18.78*, 18.23%**) were significantly higher(**:p < 0.01, *:p < 0.05) in comparison to the control(16.28, 17.22, 16.38%), and the proportions of stearic acid of group D(36.41, 37.23, 39.53%) were also significantly higher(p < 0.01) in comparison to the control(34.18, 34.16, 36.04%). But the proportions of oleic acid(3.41*, 3.11**, 3.12**%) and linoleic acid (18.03**, 15.79**, 14.74**%) of group D were significantly lower(**:p < 0.01, *:p < 0.05) in comparison to the control(oleic : 3.63, 3.72, 3.79%, linoleic : 20.03, 18.71, 18.48%). 9. In order to determine the oxidative damages to the protein in serum, mitochondrial and microsomal fraction of the rat liver, the patterns of the SDS-PAGE were identified, but the results of SDS-PAGE were not significantly different between the control and experimental groups.

  • PDF