• Title/Summary/Keyword: Metabolic intermediates

Search Result 57, Processing Time 0.027 seconds

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

Effect of Panax Ginseng Saponin on Metabolism and Ion Transport in Human Erythrocytes (인삼이 적혈구세포의 해당과정 및 막 투과도에 미치는 영향)

  • Kang, Bok-Soon;Han, Kyung-Hee
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 1983
  • Red cell glycolytic intermediates, metabolites and metabolic ratios were studied. Glycolytic intermediates were measured in neutralized perchloric acid extracts of red cell suspensions after 3 hr incubation at $37^{\circ}C$ in the presence and absence of saponin. Adenosine triphosphate(ATP), adenosine diphosphate(ADP), pyruvate and lactate were measured by enzymatic procedures involving stoichiometric oxidation or reduction of a pyridine nucleotide. Glucose was determined using glucose oxidase after zinc hydroxide extraction. The redox state was calculated from the lactate dehydrogenase equilibrium. Adenosine triphosphatase activity(ATPase) was measured by determining the amount of phosphate released from ATP by washed erythrocyte membranes(ghost) during 20 min. incubation. Both total hydrolysis and the amount of hydrolysis that occured in the presence of ouabain were measured. The second measurement yields Mg-ATPase and represents nonspecific ATPase activity of the membranes. The difference between total and Mg-ATPase activity can be attributed to Na-K-ATPase. For the measurement of sodium fluxes, human erythrocytes were preincubated in $^{22}Na$ for 3 hr at $37^{\circ}C$, washed and suspended in a tracer-free medium. The amount of $^{22}Na$ transported out of cells at any time was determined by analysis of supernatant samples taken at various time after addition of the labeled cells to isotope-free medium. The cells and medium were separated and the radioactivity appearing in the medium was measured. From the total radioactivity in the suspension and the radioactivity appearing in the medium at known time, the rate constant for sodium release was computed. The results are summarized as follows: 1) ATP and ATP/ADP were found to increase at every concentration of saponin tested whereas ADP declined at every cone. of saponin. The increase in pyruvate and lactate were observed at every cone, of saponin and thus $NAD^+/NADH$ computed from pyruvate/lactate also increased. Glucose utilization was stimulated by saponin. 2) $Na^+-K^+-ATPase$ activities showed a biphasic response to saponin, first increasing in lower concentration and then decreasing in higher concentration of saponin. 3) The efflux of sodium was significantly increased by saponin in the range of 5 to 10 mg%. The stimulatory effect of saponin on the rate constants for active(ouabain-sensitive) sodium efflux was inhibited by addition of ouabain.

  • PDF

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MPT

  • Ghosh, Suparna;Dhanasingh, Immanuel;Ryu, Jaewon;Kim, Si Wouk;Lee, Sung Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1261-1271
    • /
    • 2020
  • Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+, Ca+, and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.

A Study on the metabolism mechanism of Benzene, Toluene and Xylene by Cytochrome P-450 dependent radical-mediated (Cytochrome P-450 의존성 radical 전달에 의한 Benzene, Toluene, Xylene의 대사기전 연구)

  • 김기웅;장성근;김양호;문영한
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 1995
  • This study was undertaken to investigate the effects of organic solvents on xenobiotic metabollzing enzyme system in vivo by meaas of experimental conditions i.e. (1) single group which was treated by benzene (B), toluene (T) and xylene (X), respectively, (2) combination group which was treated by mixture of benzene+toluene (BT), benzene+xylene (BX), and toluene+xylene (TX), respectively, (3) mixture group which was treated by benzene+ toluene+xylene mixture (M), and to interpreat the interaction between the organic solvents metabolizing enzymes. 1. The contents of cytochrome P-450 in liver microsomes were increased (p < 0.01) in organic solvents treated groups, and the contents of cytochrome P-450 were increased by following order of B < T < M < BT=BX < X < TX. 2. The activity of cytochrome P-450 dependent AHHase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the activity of AHHase was increased by following order of B < T < BT=BX=TX=xylene < M. 3. The activity of NADPH P-450 reductase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the order of M < combinated group < X < T

  • PDF

The Effects of Long-Term, Low-Level Exposure to Monocyclic Aromatic Hydrocarbons on Worker's Insulin Resistance

  • Won, Yong-Lim;Ko, Yong;Heo, Kyung-Hwa;Ko, Kyung-Sun;Lee, Mi-Young;Kim, Ki-Woong
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.365-374
    • /
    • 2011
  • Objectives: This study was designed to investigate whether long-term, low-level exposure to monocyclic aromatic hydrocarbons (MAHs) induced insulin resistance. Methods: The subjects were 110 male workers who were occupationally exposed to styrene, toluene, and xylene. One hundred and ten age-matched male workers who had never been occupationally exposed to organic solvents were selected as a control group. Cytokines, which have played a key role in the pathogenesis of insulin resistance, and oxidative stress indices were measured. Assessment of exposure to MAHs was performed by measuring their ambient levels and their urinary metabolites in exposed workers, and the resulting parameters between the exposed group and non-exposed control groups were compared. Results: There was no significant difference in general characteristics and anthropometric parameters between the two groups; however, total cholesterol, fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance levels were significantly higher in the exposed group. Phenylglyoxylic acid levels showed significant association with tumor necrosis factor-${\alpha}$, total oxidative status, and oxidative stress index via multiple linear regression analysis. Further, there was a negative correlation between methylhippuric acid levels and total anti-oxidative capacity, and there was a significant relationship between MAHs exposure and fasting glucose levels, as found by multiple logistic regression analysis (odds ratio = 3.95, 95% confidence interval = 1.074-14.530). Conclusion: This study indicated that MAHs increase fasting glucose level and insulin resistance. Furthermore, these results suggested that absorbing the organic solvent itself and active metabolic intermediates can increase oxidative stress and cytokine levels, resulting in the changes in glucose metabolism and the induction of insulin resistance.

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2002.10a
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF

Effect of Ethanol on the Reduction of Propionate under Anaerobic Condition (혐기성 조건에서 에탄올의 주입에 따른 프로피온산의 저감에 관한 연구)

  • Hyun, Seung-Hoon;Kim, Do-Hee;Park, Soo-Jin;Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1869-1879
    • /
    • 2000
  • A series of experiments were conducted for modeling the fate and effect of the coupled oxidation reduction reaction of ethanol and propionate recognized as important intermediates in anaerobic degradation metabolism. Anaerobic kinetics for conversion of propionate and the interaction with ethanol were investigated using the model of specific substrate priority utilization effect. Seed cultures for the experiment were obtained from an anaerobically enriched steady-state propionate master culture reactor (HPr-MCR), ethanol-propionate master culture reactor (EtPr-MCR) and glucose master culture reactor (Glu-MCR). Experiments were consisted of four phases. Phase I, II and III were conducted by fixing the propionate organic loading as 1.0 g COD/L with increasing ethanol loading of 0, 100, 200, 400 and 1,000 mg/L, to find metabolic interaction of ethanol and propionate degradation by each enriched anaerobic culture. In phase IV, different mixing ratios of Glu-MCR and HPr-MCR cultures with fixed propionate organic loading, 1.0 g COD/L, were applied to observe the propionate degradation metabolic behavior. In the results of this study, different pathways of propionate and ethanol conversion were found using a modified competitive inhibition kinetic model. Increase of $K_{s2}$ value reflected the formation of acetate followed by ethanol degradation. In addition. $K_3$ value was increased slightly as the reactions of acetate formation and degradation were occurred in acetoclastic methanogenesis.

  • PDF

Study of the possible mode of action of O-ethyl S-methyl ethylphosphonothioate via the formation of S-oxide in chemical and metabolic oxidation systems (화학적, 대사적 산화반응 중 생성되는 S-oxide를 이용한 O-ethyl S-methyl ethylphosphonothioate (1) 의 독성 기작에 관한 연구)

  • Hur, J.H.;Fukuto, T.R.;Han, D.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.167-177
    • /
    • 1991
  • O-ethyl S-methyl ethylphosphonothioate [$LD_{50}$ (rat, oral) 4.6mg/kg ; $K_i$(bovine erythrocyte acetylcholinesterase) 303 $M^{-1\;min-1}$] was selected as a model compound to study the mode of action of O, S-dialkyl alkylphosphonothioates which have been hypothesized to be toxic via a bioactivation process. Two chemical oxidants, meta-chloroperoxybenzoic acid and monoperoxyphthalic acid, and rat liver microsomal oxidases were used to mimic the action of mixed function oxidases on the model compound. The formation of S-oxide, a very unstable active intermediate, was proposed based on the identification of metabolic products.Furthermore, a trapping experiment with ethanol showed that the unstable intermediate S-oxide had the ability to phosphorylate acetylcholinesterase which is an important enzyme in nerve systems. The S-oxide intermediates are presumed to be responsible for the toxicity of O,S-dialkyl alkylphosphonothioates.

  • PDF

THE ROLE OF PANAX GINSENG IN DETOXIFICATION OF XENOBIOTICS (독성물질 해독작용에 미치는 인삼의 효능)

  • Lee F.C.;Park J.K.;Kim E.K.;Ko J.K.;Lee J.S.;Kim K.Y.
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.21-26
    • /
    • 1984
  • The balance between metabolic activation of xenobiotics and detoxification of their active metabolites may playa vital role in controlling mutagenic and carcinogenic processes. To assess the possible role of P. ginseng C.A. Meyer in detoxification of xenobiotics, we studied the effects of ginseng on several parameters of the monooxygenasd system, including benzo(a) pyrene monooxygenase(AHH) and benzo(a) pyrene epoxide hydratase(EH) as well as effects of ginseng on the conjugation system. Test animals receiving ginseng saponin-fraction induced epoxide hydratase activity to over $150\%$ (20mg/kg b.w.) of the control and increased glutathione transferase activity (GSH-T) up to $140\%$ (20mg/kg b.w.) of the control, whereas no significant changes were observed in the benzopyrene monooxygenase activity (AHH). Such a selective induction of the inactivation enzyme epoxide hydratase, combined with a marked elevation of the detoxifying enzyme glutathione transferase, without a concurrent induction of benzopyrene monooxygenase which is responsible for the formation of carcinogenic intermediates, demonstrates that ginseng has the potential to alter the metabolic course of carcinogenic polycyclic aromatic hydrocarbons, and thereby enhance detoxification. Thus, ginseng may play an important role in the prevention of tumors caused by carcinogens.

  • PDF