• 제목/요약/키워드: Metabolic imaging

검색결과 151건 처리시간 0.023초

Tumor volume/metabolic information can improve the prognostication of anatomy based staging system for nasopharyngeal cancer? Evaluation of the 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer

  • Jeong, Yuri;Lee, Sang-wook
    • Radiation Oncology Journal
    • /
    • 제36권4호
    • /
    • pp.295-303
    • /
    • 2018
  • Purpose: We evaluated prognostic value of the 8th edition of the American Joint Committee on Cancer/International Union for Cancer Control (AJCC/UICC) staging system for nasopharyngeal cancer and investigated whether tumor volume/metabolic information refined prognostication of anatomy based staging system. Materials and Methods: One hundred thirty-three patients with nasopharyngeal cancer who were staged with magnetic resonance imaging (MRI) and treated with intensity-modulated radiotherapy (IMRT) between 2004 and 2013 were reviewed. Multivariate analyses were performed to evaluate prognostic value of the 8th edition of the AJCC/UICC staging system and other factors including gross tumor volume and maximum standardized uptake value of primary tumor (GTV-T and SUV-T). Results: Median follow-up period was 63 months. In multivariate analysis for overall survival (OS), stage group (stage I-II vs. III-IVA) was the only significant prognostic factor. However, 5-year OS rates were not significantly different between stage I and II (100% vs. 96.2%), and between stage III and IVA (80.1% vs. 71.7%). Although SUV-T and GTV-T were not significant prognostic factors in multivariate analysis, those improved prognostication of stage group. The 5-year OS rates were significantly different between stage I-II, III-IV (SUV-T ≤ 16), and III-IV (SUV-T > 16) (97.2% vs. 78% vs. 53.8%), and between stage I, II-IV (GTV-T ≤ 33 mL), and II-IV (GTV-T > 33 mL) (100% vs. 87.3% vs. 66.7%). Conclusion: Current anatomy based staging system has limitations on prognostication for nasopharyngeal cancer despite the most accurate assessment of tumor extent by MRI. Tumor volume/metabolic information seem to improve prognostication of current anatomy based staging system, and further studies are needed to confirm its clinical significance.

PET Imaging of Click-engineered PSMA-targeting Immune Cells in Normal Mice

  • Hye Won Kim;Won Chang Lee;In Ho Song;Hyun Soo Park;Sang Eun Kim
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.53-61
    • /
    • 2022
  • This study aimed to increase the targeting ability against PSMA in cell therapy using metabolic glycoengineering and biorthogonal chemistry and to visualize cell trafficking using PET imaging. Cellular membranes of THP-1 cells were decorated with azide(-N3) using Ac4ManNAz by metabolic glycoengineering. Engineered THP-1 cells were conjugated with DBCO-bearing fluorophore (ADIBO-Cy5.5) for 1 h at different concentrations and analyzed by confocal fluorescence microscopy and flow cytometry. For PSAM ligand conjugation to THP-1 cells, Ac4ManNAz treated THP-1 cells were incubated with DBCO-PSMA ligand (ADIBO-GUL) at a final concentration with 100 µM for 1 h. To evaluate the effect on cell recognition, PSMA ligand conjugated THP-1 cells(as effectors) were co-cultured with PSMA positive 22RV1 (as target cells) at 3 : 1 a effector-to-target cell (E/T) ratio. The interaction between THP-1 and 22RV1 was monitored by confocal fluorescence microscopy. For preparing the radiolabeled THP-1, the cells were treated at the activity of ~ 740 kBq of [89Zr]Zr(oxinate)4/5 × 106 cells. Radiolabeled cells were analyzed for determination of cell-associated radioactivity by gamma counting and viability using MTS assay. In the cytotoxicity assay, THP-1 cells did not have any cytotoxicity even when the Ac4ManNAz concentration was 100 µM. In confocal microscopy and flow cytometry, THP-1 cells were efficiently labeled ADIBO-Cy5.5 in a dose-dependent manner, and the dose of 100 µM was the optimal concentration for the following experiments. The clusters of PSMA ligand-conjugated THP-1 cells and 22RV1 cells were identified, indicating cell-cell recognition over the cell surface between two types of cells. Cell radiolabeling efficiency was 54.5 ± 17.8%. THP-1 labeled with 0.09 ± 0.03 Bq/cell showed no significant cytotoxicity compared to unlabeled THP-1 up to 7 days. We successfully demonstrated that Ac4ManNAz treated cells were efficiently conjugated with ADIBO-GUL for preparing the PSMA-targeting cells, and [89Zr]Zr(oxinate)4 could be used to label cells without toxicity. It suggested that PSMA-ligand conjugated cell therapy could be improved cell targeting and be monitored by PET imaging.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

피하 지방층염양 T-세포 림프종의 F-18 FDG PET/CT 소견 (F-18 FDG PET/Cl Findings of Subcutaneous Panniculitis - like T- Cell lymphoma: A Case Report)

  • 공은정;조인호;천경아;배영경;최준혁;현명수
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권3호
    • /
    • pp.240-244
    • /
    • 2009
  • F-18 FDG PET is a metabolic imaging modality that is efficacious in staging and assessment of treatment response for variety of lymphomas. We report usefulness of F-18 FOG PET/Cl in evaluating severity of the disease and response to therapy in a patient with subcutaneous panniculitis- like T-cell lymphoma (SPTCL). Here we describe a case of SPTCL in 24-year-old man who had wide spread firm and tender nodular lesions with increased F-18 FOG uptake. After chemotherapy follow up F-18 FDG PET/CT image shows disseminated malignancy and then the patient died with hemophagocytic syndrome. This report suggests that F-18 FDG PET/CT may be useful in determining disease activity at the time of initial diagnosis, after treatment, and evaluating a suspected outcome of SPTCL.

Association of daily carbohydrate intake with intermuscular adipose tissue in Korean individuals with obesity: a cross-sectional study

  • Ha-Neul Choi;Young-Seol Kim;Jung-Eun Yim
    • Nutrition Research and Practice
    • /
    • 제18권1호
    • /
    • pp.78-87
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: The prevalence of obesity, a worldwide pandemic, has been increasing steadily in Korea. Reports have shown that increased intermuscular adipose tissue (IMAT) is associated with an increased risk of cardiovascular disease, independent of body mass index. However, the relationship between dietary intake and IMAT accumulation in the Korean population remains undetermined. The objective of this study was to evaluate regional fat compartments using advanced magnetic resonance imaging (MRI) techniques. We also aimed to investigate the association between IMAT amounts and dietary intake, including carbohydrate intake, among Korean individuals with obesity. SUBJECTS/METHODS: This cross-sectional study, performed at a medical center in South Korea, recruited 35 individuals with obesity (15 men and 20 women) and classified them into 2 groups according to sex. Anthropometry was performed, and body fat distribution was measured using MRI. Blood parameters, including glucose and lipid profiles, were analyzed using commercial kits. Linear regression analysis was used to test whether the IMAT was associated with daily carbohydrate intake. RESULTS: Carbohydrate intake was positively associated with IMAT in all individuals, with adjustments for age, sex, height, and weight. No significant differences in blood indicators were found between the sexes. CONCLUSIONS: Regardless of sex and age, higher carbohydrate intake was strongly correlated with greater IMAT accumulation. This suggests the need to better understand sex differences and high carbohydrate diet patterns in relation to the association between obesity and metabolic risk, which may help reduce obesity prevalence.

$^{18}F$-FDG PET을 이용한 림프종 치료 반응 평가: $^{18}F$-FDG PET의 진단 성능 특성과 구간 우도비 (Assessment of Tumor Response to Therapy in Lymphoma Using $^{18}F$-FDG PET: Diagnostic Performance of $^{18}F$-FDG PET and Interval Likelihood Ratio PET and Interval Likelihood Ratio)

  • 김창근;김대응;박무림
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권5호
    • /
    • pp.369-385
    • /
    • 2009
  • In this paper, the authors intended to summarize briefly the features of lymphoma with regard to $^{18}F$-FDG PET for assessment of tumor response to therapy, to describe why assessment of treatment response should be performed, to review what method so far has been used in monitoring treatment response, to discuss what limitations of morphologic imaging criteria for assessing tumor response are, in compared with $^{18}F$-FDG PET, and to introduce recently proposed criteria for assessing tumor response in malignant lymphoma. And also the authors emphasize the need to understand the characteristics of diagnostic performance of $^{18}F$-FDG PET in several clinical settings in order to interpret $^{18}F$-FDG PET results appropriately, and to encourage the use of interval likelihood ratio to enhance clinical implications of test results which, in turns, allows referring physicians to understand the meaning of interpretation with easy. Until recently, treatment response has been assessed according to the morphologic criteria. Metabolic imaging with $^{18}F$-FDG PET was adopted to have important role for treatment assessment in IWC+PET criteria proposed recently by IHP. To accomplish this role, we should perform and interpret $^{18}F$-FDG PET according to IWC+PET criteria. It is important for referring physicians to understand the various limitations of $^{18}F$-FDG PET and pitfalls in PET interpretation, and to understand that clinical information are needed by nuclear medicine physicians to optimize the interpretation of $^{18}F$-FDG PET.

알쯔하이머병(Alzheimer's disease)에서 FDG PET의 임상이용 (Clinical Application of $^{18}F-FDG$ PET in Alzheimer's Disease)

  • 유영훈
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권sup1호
    • /
    • pp.166-171
    • /
    • 2008
  • PET of the cerebral metabolic rate of glucose is increasingly used to support the clinical diagnosis in the examination of patients with suspected major neurodegenerative disorders, such as Alzheimer's disease. $^{18}F-FDG$ PET has been reported to have high diagnostic performance, especially, very high sensitivity in the diagnosis and clinical assessment of therapeutic efficacy. According to clinical research data hitherto, $^{18}F-FDG$ PET is expected to be an effective diagnostic tool in early and differential diagnosis of Alzheimer's disease. Since 2004, Medicare covers $^{18}F-FDG$ PET scans for the differential diagnosis of fronto-temporal dementia (FTD) and Alzheimer's disease (AD) under specific requirements; or, its use in a CMS approved practical clinical trial focused on the utility of $^{18}F-FDG$ PET in the diagnosis or treatment of dementing neurodegenerative diseases.

뇌종양에서의 $^{18}F-FDG$ PET의 임상 이용 (Clinical Application of $^{18}F-FDG$ PET in Brain Tumors)

  • 홍일기;김재승
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권sup1호
    • /
    • pp.1-5
    • /
    • 2008
  • Primary brain tumor accounts for 1.4% of entire cancer. For males between the ages of 15 and 34 years, central nervous system tumors account for the leading cause of cancer death. $^{18}F-FDG$ PET has been reported that it can provide important diagnostic information relating to tumor grading and differentiation from non- tumorous condition. In addition, the degree of FDG metabolism carries prognostic significance. By mapping the metabolic pattern of heterogeneous tumors, $^{18}F-FDG$ PET can aid in targeting for stereotactic biopsy by selecting the subregions within the tumor that are most hypermetabolic and potentially have the highest grade. According to clinical research data, FOG PET is expected to be a helpful diagnostic tool in the management of brain tumors.

소아의 구토에 대한 방사선학적 진단 (Radiological Diagnosis of vomitting in infant and children)

  • 김인원
    • 한국건강관리협회지
    • /
    • 제1권1호
    • /
    • pp.21-25
    • /
    • 2003
  • Vomiting in pediatric patient is frequently encountered problem in emergency room or outpatient clinic. In differential diagnosis, age of the patient or accompanying symptoms should be considered in the differential diagnosis. Accurate diagnosis is very important because surgical treatment is necessary in some of the conditions. Imaging diagnosis of conservative modality such as upper gastrointestinal series or colon study is still important radiological examination in the initial differential diagnosis, but recently ultrasonography offers accurate diagnosis in many situations. The cause of vomiting in pediatric are diverse according to the age group :neonatal sepsis, necrotizing enterocolitis, or hypertrophic pyloric stenosis in neonates : gastroesophageal reflux, viral enteritis, or intussusception in infant: midgut volvulus, appendicitis, metabolic disorders, or increased intracranial pressure also an be the cause. knowledge of radiological findings of normal gastrointestinal tract is important to recognize abnormalities. A discussion of radiological findings in variable surgical conditions to present as vomiting in pediatric patients is offered.

  • PDF

Transient splenial lesion of the corpus callosum in a case of benign convulsion associated with rotaviral gastroenteritis

  • Jang, Yoon-Young;Lee, Kye-Hyang
    • Clinical and Experimental Pediatrics
    • /
    • 제53권9호
    • /
    • pp.859-862
    • /
    • 2010
  • Transient magnetic resonance (MR) signal changes in the splenium of the corpus callosum (SCC) arise from many different conditions, including encephalopathy or encephalitis caused by infection, seizures, metabolic derangements, and asphyxia. Few case reports exist on reversible SCC lesions associated with rotavirus infection. A benign convulsion with mild gastroenteritis (CwG) is frequently associated with rotaviral infections. This entity is characterized by normal laboratory findings, electroencephalogram, neuroimaging, and good prognosis. We report a case of a 2.5-year-old Korean girl with rotavirus-associated CwG demonstrating a reversible SCC lesion on diffusion-weighted MR images. She developed 2 episodes of brief generalized tonic-clonic seizure with mild acute gastroenteritis without any other neurologic abnormality. Stool test for rotavirus antigen was positive. Brain MRI done on the day of admission showed a linear high signal intensity and decreased apparent diffusion coefficient values on the SCC. The lesion completely disappeared on follow-up MRI 6 days later. The patient fully recovered without any sequelae.