• Title/Summary/Keyword: Metabolic enzymes

Search Result 376, Processing Time 0.029 seconds

Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars

  • Lee, Yun Sun;Park, Hyun-Seung;Lee, Dong-Kyu;Jayakodi, Murukarthick;Kim, Nam-Hoon;Lee, Sang-Choon;Kundu, Atreyee;Lee, Dong-Yup;Kim, Young Chang;In, Jun Gyo;Kwon, Sung Won;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Various Panax ginseng cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng. Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology. We investigated primary metabolite profiles via gas chromatography-mass spectrometry (GC-MS) and analyzed transcriptomes by Illumina sequencing using adventitious roots grown under the same conditions to elucidate the differences in metabolism underlying such genetic diversity. Results: GC-MS analysis revealed that primary metabolite profiling allowed us to classify the five cultivars into three independent groups and the grouping was also explained by eight major primary metabolites as biomarkers. We selected three cultivars (Chunpoong, Cheongsun, and Sunhyang) to represent each group and analyzed their transcriptomes. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Conclusion: Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.

Reconstruction of Metabolic Pathway for the Chicken Genome (닭 특이 대사 경로 재확립)

  • Kim, Woon-Su;Lee, Se-Young;Park, Hye-Sun;Baik, Woon-Kee;Lee, Jun-Heon;Seo, Seong-Won
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • Chicken is an important livestock as a valuable biomedical model as well as food for human, and there is a strong rationale for improving our understanding on metabolism and physiology of this organism. The first draft of chicken genome assembly was released in 2004, which enables elaboration on the linkage between genetic and metabolic traits of chicken. The objectives of this study were thus to reconstruct metabolic pathway of the chicken genome and to construct a chicken specific pathway genome database (PGDB). We developed a comprehensive genome database for chicken by integrating all the known annotations for chicken genes and proteins using a pipeline written in Perl. Based on the comprehensive genome annotations, metabolic pathways of the chicken genome were reconstructed using the PathoLogic algorithm in Pathway Tools software. We identified a total of 212 metabolic pathways, 2,709 enzymes, 71 transporters, 1,698 enzymatic reactions, 8 transport reactions, and 1,360 compounds in the current chicken genome build, Gallus_gallus-2.1. Comparative metabolic analysis with the human, mouse and cattle genomes revealed that core metabolic pathways are highly conserved in the chicken genome. It was indicated the quality of assembly and annotations of the chicken genome need to be improved and more researches are required for improving our understanding on function of genes and metabolic pathways of avian species. We conclude that the chicken PGDB is useful for studies on avian and chicken metabolism and provides a platform for comparative genomic and metabolic analysis of animal biology and biomedicine.

Sustained Production of Amino Acids by Immobilized Analogue- resistant Mutants of a Cyanobacterium Anacystis nidulans BD-1

  • Bagchi, Suvendra Nath;Rao, Nandula Seshgiri
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.341-344
    • /
    • 1997
  • Batch cultures of Anacystis nidulans BD-1 resistant to azaleucine and fluorotyrosine produced and liberated a wide range of amino acids, notably glutamic acid, alanine, phenylalanine, leucine, isoleucine, cysteine and methionine. Sustained liberation for prolonged periods was achieved after immobilization on calcium alginate and the net concentration in the medium was 0.18-0.2 g $I^{-1}$. While acetohydroxy acid synthase in azaleucine-resistant mutant lost leucine- and isoleucine-sensitivity, fluorotyrosine-resistant strain turned phenylalanine activating. The activities of nitrate assimilating enzymes were also higher in the mutants and were relaxed from ammonium-repression. The metabolic adjustments involved in amino acid overproduction are discussed.

  • PDF

S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine: Synthesis and Biochemical Properties Associated with Chemoprevention (S-(N,N-Diallyldithiocarbamoyl)-N-acetylcysteine의 합성 및 발암억제와 관련된 생화학적 특성)

  • 이병훈
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.177-181
    • /
    • 1998
  • Dithiocarbamate and mixed disulfide containing allyl functions were designed and synthesized as putative chemopreventive agents, i.e. N,N-diallyldithiocarbamate (DATC) and S-(N,N-diallyldithiocarbamoyl)-N-acetylcysteine (AC-DATC). DATC and AC-DATC were administered and the activities of cytosolic glutathione S-transferase (GST), glutathione reductase (GR) and microsomal N-nitrosodiethylamine (NDEA) deethylase were assayed in order to test the effects of these organosulfur com-pounds on the detoxification and metabolic activation system of NDEA. The amounts of hepatic glutathione (GSH and GSSG) was also determined. The administration of DATC to rats led to an increase in the activity of GR and to an inhibition of CYP2E1-mediated NDEA deethylation. AC-DATC induced the activity of GR and GST, increased the hepatic GSH content and inhibited the rate of NDEA deethylation. The level of GSSG was decreased as a consequence of the increased activity of GR. These effects may contribute to possible antimutagenic and anticarcinogenic action of the dithiocarbamates investigated.

  • PDF

Enhancement of ${\beta}$-Glucan Content in the Cultivation of Cauliflower Mushroom (Sparassis latifolia) by Elicitation

  • Park, Hyun;Ka, Kang-Hyeon;Ryu, Sung-Ryul
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • The effectiveness of three kinds of enzymes (chitinase, ${\beta}$-glucuronidase, and lysing enzyme complex), employed as elicitors to enhance the ${\beta}$-glucan content in the sawdust-based cultivation of cauliflower mushroom (Sparassis latifolia), was examined. The elicitors were applied to the cauliflower mushroom after primordium formation, by spraying the enzyme solutions at three different levels on the sawdust-based medium. Mycelial growth was fully accomplished by the treatments, but the metabolic process during the growth of fruiting bodies was affected. The application of a lysing enzyme resulted in an increase in the ${\beta}$-glucan concentration by up to 31% compared to that of the control. However, the treatment resulted in a decrease in mushroom yield, which necessitated the need to evaluate its economic efficiency. Although we still need to develop a more efficient way for using elicitors to enhance functional metabolites in mushroom cultivation, the results indicate that the elicitation technique can be applied in the cultivation of medicinal/edible mushrooms.

The Functions of Lactic Acid Bacteria in Colon Cancer Prevention (결장암 예방에 대한 유산균의 기능)

  • Jeon, Woo-Min
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.55-58
    • /
    • 2011
  • Certain lactic acid bacteria have anti-tumor activity, especially colon cancer. The fermented milk products containing that kind of lactic acid bacteria have to be recommended for human health as excellent health functional foods. This paper have been classified by 5 regions on the functions of lactic acid bacteria related to prevention of colon cancer. 1) Enhancing of host's immune response; Production of cytokines. 2) Binding and degradation of potential carcinogens; Binding and degradation of mutagenicity. 3) The changes of intestinal microflora and production of antitumorigenic or antimutagenic compounds; Production of azoxymethane. 4) Alteration of the metabolic activity of intestinal microflora; Decrease of harmful enzymes in intestinal tract. 5) Alteration of physicochemical conditions in the colon; Decrease of pH and bile acids contents.

  • PDF

Evaluation on the effects of pesticide residues to agroecosystem in Korea (농업 생태계에 대한 잔류농약의 영향 평가)

  • Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.80-93
    • /
    • 1997
  • Pesticide residues in soil could be affected to the growth of micro organisms and the activity of enzymes directly, and successively to the soil properties as pH, Eh and nitrogen metabolism. However, residues are diminished by degradation of soil microorganisms, run-off, leaching, volatilization, photodecomposition and uptake through crops. In this paper research results published in Korea were summarized about translocation of soil residues into crops, fates of residues in soil, effects to the activity of soil microorganisms and metabolic pathways of some pesticides. Generally speaking, pesticide residues in soil were not much affected to the agro-ecosystem except few chemicals. So it should be needed more further researches in this field, continuously.

  • PDF

Effect of Soy Protein Diet on Mucosa Layer of Murine Small Intestine

  • Lee, Aeri;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.1
    • /
    • pp.34-42
    • /
    • 2014
  • Soy and fermented soy are popular and recognized as a health food among Koreans. Since soy proteins are known to be protease resistant, even to pepsin and pancreatin, it is hypothesized that soy proteins may interact with the intestinal tract and trigger certain physiological reactions. To test this hypothesis, mice were fed diets supplemented with soy, Chunkukjang, or casein. The differentially expressed proteins were analyzed using 2-D gels and identified by peptide mass fingerprinting using mass spectrometry. The majority of the differentially expressed proteins could be functionally grouped into metabolic enzymes and calcium-binding proteins. The differential protein expression by the soy-fed groups was also verified based on a representative protein, tropomyosin, using a Western blotting analysis. In addition, the soy-fed groups exhibited a taller villi structure. Therefore, this study suggests that soy proteins can be an effective nutrient and physiological stimulant for the intestines.

Fragment Molecular Orbital Method: Application to Protein-Ligand Binding

  • Watanabe, Hirofumi;Tanaka, Shigenori
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.6.1-6.5
    • /
    • 2010
  • Fragment molecular orbital (FMO) method provides a novel tool for ab initio calculations of large biomolecules. This method overcomes the size limitation difficulties in conventional molecular orbital methods and has several advantages compared to classical force field approaches. While there are many features in this method, we here focus on explaining the issues related to protein-ligand binding: FMO method provides useful interaction-analysis tools such as IFIE, CAFI and FILM. FMO calculations can provide not only binding energies, which are well correlated with experimental binding affinity, but also QSAR descriptors. In addition, FMO-derived charges improve the descriptions of electrostatic properties and the correlations between docking scores and experimental binding affinities. These calculations can be performed by the ABINIT-MPX program and the calculation results can be visualized by its proper BioStation Viewer. The acceleration of FMO calculations on various computer facilities is ongoing, and we are also developing methods to deal with cytochrome P450, which belongs to the family of drug metabolic enzymes.

Licorice-induced Hypokalemic Myopathy (감초 유발성 저칼륨혈성 근병증)

  • Park, Kyung-Seok;Chung, Jae-Myun;Joo, Mee;Lim, Kyung Ho;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.50-52
    • /
    • 2001
  • Licorice is widely used as a Chinese(herbal) medicine. The glycyrrhizin, a main ingredient of the natural licorice, has a potent mineralocorticoid effect which may cause severe hypokalemia and muscle paralysis. We present a 60-year-old woman, who had been ingesting one or two spoonful of licorice powder daily for about one year, developed acute flaccid quadriparesis with high levels of serum muscle enzymes and the typical features of mineralocorticoid excess such as severe hypokalemia and metabolic alkalosis. Both plasma renin activity and serum aldosterone level were below the normal values. This case indicates that licorice-induced hypokalemic myopathy should be considered in the differential diagnosis of a patient with acute quadriparesis and hypokalemia.

  • PDF