• Title/Summary/Keyword: Metabolic assay

Search Result 288, Processing Time 0.024 seconds

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIV)-in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Cells

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 1-Chloro-3-bromopropane CAS No. 109-70-6) induced chromosomal aberrations with significance at the concentration of $185.0\;{\mu}g/mL\;and\;1,600\;{\mu}g/mL$ both in the presence and absence of metabolic activation system, respectively. Triphenyl phosphite (CAS No. 101-02-0), which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity in the range of $95.0-4.9\;{\mu}g/mL$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in Chinese hamster lung cells in vitro, 1-chloro-3-bromopropane revealed a positive clastogenic result in this study.

Genotoxic Evaluation of Surfactin C in Chinese Hamster Lung Cell Line

  • Lim, Jong-Hwan;Song, In-Bae;Park, Byung-Kwon;Kim, Myoung-Seok;Hwang, Youn-Hwan;Yun, Hyo-In
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.47-50
    • /
    • 2009
  • To investigate the mutation inducibility of surfactin C, we performed the chromosome aberration assay with Chinese hamster lung cells in vitro. The colorimetric MTT screening assay was carried out to determine the cytotoxicity index ($IC_{50}$) of surfactin C. The $IC_{50}$ value was $125{\mu}g/ml$. For the chromosome aberration test of surfactin C, the maximum concentration was employed as $125{\mu}g/ml$, followed by 62.5 and $31.25{\mu}g/ml$ for the lower concentrations, with or without metabolic activation (S9). Cyclophosphamide and mitomycin C were used as positive controls in the presence and absence of S9 metabolic activation, respectively. These results showed that surfactin C was not capable of inducing chromosome aberration, as measured by the chromosome aberration test using Chinese hamster lung cell line. There is no evidence for surfactin C to have a genotoxic potential.

Aequorin Based Functional Assessment of the Melanin Concentrating Hormone Receptor by Intracellular Calcium Mobilization

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.152-158
    • /
    • 2010
  • Melanin concentrating hormone is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G-protein coupled receptor family, especially plays an important role in the complex regulation of energy balance and body weight mediated by the melanin concentrating hormone receptor subtype 1 (MCH1). Compelling pharmacological evidence implicating MCH1 signaling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies as MCH1 antagonists may have potential therapeutic benefit in the treatment of obesity and metabolic syndrome. Although fluorescence-based calcium mobilization assay platform has been one of the most widely accepted tools for receptor research and drug discovery, fluorescence interference and shallow assay window limit their application in high throughput screening and have led to a growing interest in alternative, luminescence-based technologies. Herein, a luminescence-based functional assay system for the MCH1 receptor was developed and validated with the mitochondrial targeted aequorin. Aequorin based functional assay system for MCH1 presented excellent Z' factor (0.8983) and high signal-to-noise ratio (141.9). The nonpeptide MCH1 receptor antagonist, SNAP 7941 and GSK 803430, exhibited $IC_{50}$ values of 0.62 ${\pm}$ 0.11 and 12.29 ${\pm}$ 2.31 nM with excellent correlation coefficient. These results suggest that the aequorin based assay system for MCH1 is a strong alternative to the traditional GPCR related tools such as radioligand binding experiments and fluorescence functional determinations for the compound screening and receptor research.

Evaluation of Mutagenicity with Gamgung-tang Using Host-Mediated Assay (Host-Mediated Assay를 이용한 감궁탕의 돌연변이원성 평가)

  • Shon, Yun-Hee;Kim, Cheorl-Ho;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.93-96
    • /
    • 2005
  • Mutagenicity of Gamgung-tang (GGT) was tested using in vitro S-9 mixture in vitro host-mediated assay with Salmonella typhimurium. In the previous reports, GGT was tested for the safety using Ames(-S-9), Bacillus subtilis Rec, and umu gene expression mutagenicity tests. Mutagenic activity in any assays we tested was not found. In this report, we further investigated safety of GGT after metabolic activation in vivo. Ames test with S-9 mixture and host-mediated assay with Salmonella typhimurium TA98 were used to identify metagenic property of GGT. GGT was administered 3 times with i.m. to Balb/c mice did not induced mutagenic effect in Salmonella typhimurium TA98 recovered from the liver after 3.5h with i.p. treatment. Over the entire dose range $(3{\sim}150mg/mouse)$ tested no toxicity was detected to the bacterial cells. These results suggest that there was no DNA damage and mutagenicity by GGT.

Mutagenicity and Genotoxicity Assessment of Leuconostoc lactis DMLL10 Isolated from Kimchi

  • Heejung Park;Seoyeon Lee;Sojeong Heo;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1803-1809
    • /
    • 2024
  • Leuconostoc lactis DMLL10 is a microorganism specific to kimchi fermentation. In this study, we sought to evaluate the toxicity of this strain, which was newly isolated from kimchi, to determine its safety as a food ingredient. Bacterial reverse mutation assay, chromosomal aberration assay, and mammalian cell in vitro micronucleus assay were performed to assess the genetic toxicity of Leu. lactis DMLL10. The strain did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537, or Escherichia coli WP2uvrA, with or without metabolic activation of S9 mixture. The oral administration of Leu. lactis DMLL10 also did not significantly increase the number of micronucleated polychromatic erythrocytes, or the mean ratio of polychromatic to total erythrocytes. Additionally, Leu. lactis DMLL10 did not cause a significant chromosomal aberration in CHU/IL cells in the presence or absence of S9 activation. Therefore, Leu. lactis DMLL10 can be suggested as a functional food ingredient with reliability and safety.

Relationship between Ferric Reducing Antioxidant Power and Metabolic Risk Factors in Korean Women Living in Seoul (서울지역 일부 성인 여성에서 혈청 Ferric Reducing Antioxidant Power와 대사 위험요인간의 상관성에 대한 연구)

  • Kwak, Ho-Kyung;Lee, Mee-Sook;Lim, So-Young;Yoon, Sun
    • Korean Journal of Community Nutrition
    • /
    • v.13 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The present study was conducted to examine metabolic risk factors and total antioxidant capacity (TAC) of Korean females living in Seoul and to investigate the relationship between the metabolic risk factors and serum TAC. A total of 353 females aged between 20 and 64 participated in the study. Obesity indicators, blood pressure, serum lipid profile and fasting blood glucose were measured as metabolic risk factors. Ferric reducing antioxidant power (FRAP) assay was employed to determine serum TAC of subjects. Obesity indicators such as body mass index, waist circumference and waist-hip ratio were significantly higher in the participants aged $\geq$ 50 y (older group) than in the participants aged 20-49 y (younger group) (p < 0.001). Blood pressure, serum total cholesterol (TC), triglyceride (TG) and fasting blood glucose were also significantly higher in the older group than in the younger group (p < 0.001), demonstrating significant positive correlations between age and MS risk factors. The association between FRAP and MS risk factors were also investigated. FRAP values showed significant positive correlations with age (p = 0.001), serum TG (p = 0.002) and TC (p = 0.03). A tendency of positive association between FRAP and waist circumference was observed without any significant difference (p = 0.06). Increased serum FRAP with central obesity and serum lipids may be interpreted as results of activation of antioxidant defense system against oxidative stress induced by metabolic syndrome (MS) constituent factors. However, to verify the function of FRAP as a potential biomarker of susceptibility to MS various contributors to the plasma antioxidant capacity and their biological relevance related to MS should be elucidated further.

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

CYTOTOXICITY OF DENTURE BASE RESINS (의치상 레진의 세포독성에 관한 연구)

  • Kim Seong-Kyun;Chang Ik-Tae;Heo Seong-Joo;Keak Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.309-322
    • /
    • 2002
  • The purpose of this study was to investigate the cytotoxicity and mutagenicity of denture base resins. According to manufacturer's instructions, resin specimens were made. Group 1 : heat-polymerizing acrylic resin (Luciton $199^{(R)}$) Group 2 : heat-polymerizing acrylic resin containing polyhedraloligosilsesquioxane(POSS resin) Group 3 : auto-polymerizing acrylic resin (Repair $Acrylic^{(R)}$) Group 4 : direct relining auto-polymerizing acrylic resin (Tokuso $Rebase^{(R)}$). Fresh specimens 24 hrs. and 72 hrs. soaked specimens in distil)ed water were made. Responses with metabolic assay and mutagenesis assay to eluates from resin specimens were measured. Cultures with medium alone provided controls. Cytotoxicity was assessed with agar overlay test. The results were as follows; 1. Group 4 showed higher cytotoxicity than Group 1, Group 2 and Group 3 in fresh, 24-an4 72-hour immersion caries (p<.05). Group 3 showed higher cytotoxicity than Group 2 in fresh cases and showed higher cytotoxicity than Group 1 and Group 2 in 24-and 72-hour immersion cases (p<.05) . Group 1 and Group 2 showed no significant difference. 2. All acrylic denture base resins skewed significant increase of cell activity as immersion time increased (p<.05). 3. Auto-polymerizing acrylic denture base resins skewed higher cytotoxicity than heat-polymerizing acrylic denture base resins (p<.05). 4. All acrylic denture base resins showed lower mutagenicity than controls (p<.05).

Evaluation of the genetic toxicity of synthetic chemicals (V) -in vitro Chromosomal Aberration Assay with 17 chemicals in Chinese Hamster Lung Cells-

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Youn-Jung;Choi, Hae-Yeon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.215-222
    • /
    • 2002
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 17 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. Two most cytotoxic chemicals, dodecyl methacrylate (CAS No. 142-90-5) and 2-ethylhexyl methacrylate (CAS No. 688-84-6), among 17 chemicals tested revealed no clastogenicity in the range of 0.0165-0.066 $\mu\textrm{g}$/$m\ell$ and 0.006-0.024 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system, respectively. All 17 chemicals revealed no significant induction of chromosomal aberration both in the presence and absence of metabolic activation system in this assay. From the results of chromosomal aberration assay with 17 synthetic chemicals in Chinese hamster lung cells in vitro, we did not observed positive clastogenic results in this study.

  • PDF

Evaluation of the Genetic Toxicity of Cyclopentane and Ammonium Nitrate - In vitro Mammalian Chromosomal Aberration Assay in Chinese Hamster Ovary Cells

  • Kim, Soo-Jin;Rim, Kyung-Taek;Kim, Jong-Kyu;Kim, Hyeon-Yeong;Yang, Jeong-Sun
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • Objectives: In this study, the in vitro mammalian chromosomal aberration (CA) assay was conducted to gain additional information concerning the hazards associated with the use of cyclopentane and ammonium nitrate. While these two chemicals had already been tested by many methods, they had not been studied in the CA test. Methods: The assay was performed using the ovarian infantile cell (CHO-K1 cell), by the direct method (-S9) and by the metabolic activated method (+S9 mix). Results: Using the direct method, the 7 dosages in a 48 hour treatment group did not show that the frequency of CA is proportion to the dosage addition. The frequency of CA is not proportion to the dosage addition for a 6 hour treatment using the metabolic activated method. Conclusion: From these findings, it was decided that the 2 chemicals do not induce chromosomal aberrations under the tested conditions.