• Title/Summary/Keyword: Metabolic Reactions

Search Result 101, Processing Time 0.03 seconds

NUCLEAR DATA MEASUREMENT OF 186RE PRODUCTION VIA VARIOUS REACTIONS

  • Bidokhti, Pooneh Saidi;Sadeghi, Mahdi;Fateh, Behrooz;Matloobi, Mitra;Aslani, Gholamreza
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.600-607
    • /
    • 2010
  • Rhenium-186, having a half-life of 90.64 h, is an important radionuclide, used in metabolic radiotherapy and radio immunotherapy. $^{186}Re$ hydroxyethylidene diphosphonate (HEDP) is a new compound used for the palliation of painful skeletal metastases. Its production is achieved via charged-particle-induced reactions; the data are available in EXFOR library. For the work discussed in this paper, production of $^{186}Re$ was done via $^{nat}W(p,n)^{186}Re$ nuclear reaction. Pellets of $^{nat}W$ were used as targets and were irradiated with 15, 17.5, 20, 22.5, 25 MeV proton beams at 5 ${\mu}A$ current. The radiochemical separation was performed by the ion exchange chromatography method. The production yield achieved at 25 MeV was 1.91 $MBq{\cdot}{\mu}A^{-1}{\cdot}h^{-1}$. Excitation functions for the $^{186}Re$ radionuclide, via $^{186}W(p,n)^{186}Re$ and $^{186}W(d,2n)^{186}Re$ reactions were calculated by ALICE-ASH and TALYS-1.0 codes to validate and fit the experimental data and to obtain a recommended set of data for $^{186}W(p,n)^{186}Re$ reaction. Required thickness of the targets was obtained by SRIM code for each reaction.

Reconstruction of Metabolic Pathway for the Chicken Genome (닭 특이 대사 경로 재확립)

  • Kim, Woon-Su;Lee, Se-Young;Park, Hye-Sun;Baik, Woon-Kee;Lee, Jun-Heon;Seo, Seong-Won
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • Chicken is an important livestock as a valuable biomedical model as well as food for human, and there is a strong rationale for improving our understanding on metabolism and physiology of this organism. The first draft of chicken genome assembly was released in 2004, which enables elaboration on the linkage between genetic and metabolic traits of chicken. The objectives of this study were thus to reconstruct metabolic pathway of the chicken genome and to construct a chicken specific pathway genome database (PGDB). We developed a comprehensive genome database for chicken by integrating all the known annotations for chicken genes and proteins using a pipeline written in Perl. Based on the comprehensive genome annotations, metabolic pathways of the chicken genome were reconstructed using the PathoLogic algorithm in Pathway Tools software. We identified a total of 212 metabolic pathways, 2,709 enzymes, 71 transporters, 1,698 enzymatic reactions, 8 transport reactions, and 1,360 compounds in the current chicken genome build, Gallus_gallus-2.1. Comparative metabolic analysis with the human, mouse and cattle genomes revealed that core metabolic pathways are highly conserved in the chicken genome. It was indicated the quality of assembly and annotations of the chicken genome need to be improved and more researches are required for improving our understanding on function of genes and metabolic pathways of avian species. We conclude that the chicken PGDB is useful for studies on avian and chicken metabolism and provides a platform for comparative genomic and metabolic analysis of animal biology and biomedicine.

Metabolic Flux Distribution for $\gamma$-Linolenic Acid Synthetic Pathways in Spirulina platensis

  • Meechai Asawin;Pongakarakun Siriluk;Deshnium Patcharaporn;Cheevadhanarak Supapon;Bhumiratana Sakarindr
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.506-513
    • /
    • 2004
  • Spirulina produces $\gamma$-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of two Spiru/ina strains, wild type BP and a high­GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis of S. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass syn­thesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes - the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate - were measured and the remaining fluxes were calculated using lin­ear optimization. The calculation showed that the flux through the reaction converting acetyl­CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild­type strain. This finding implies that this reaction is rate controlling. This suggestion was sup­ported by experiments, in which the stimulating factors for this reaction $(NADPH\;and\;MgCl_{2})$ were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

Development of L-Threonine Producing Recombinant Escherichia coli using Metabolic Control Analysis (대사 조절 분석 기법을 이용한 L-Threonine 생산 재조합 대장균 개발)

  • Choi, Jong-Il;Park, Young-Hoon;Yang, Young-Lyeol
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.62-65
    • /
    • 2007
  • New strain development strategy using kinetic models and metabolic control analysis was investigated. In this study, previously reported mathematical models describing the enzyme kinetics of intracellular threonine synthesis were modified for mutant threonine producer Escherichia coli TF5015. Using the modified models, metabolic control analysis was carried out to identify the rate limiting step by evaluating the flux control coefficient on the overall threonine synthesis flux exerted by individual enzymatic reactions. The result suggested the production of threonine could be enhanced most efficiently by increasing aspartate semialdehyde dehydrogenase (asd) activity of this strain. Amplification of asd gene in recombinant strain TF5015 (pCL-$P_{aroF}$-asd) increased the threonine production up to 23%, which is much higher than 14% obtained by amplifying aspartate kinse (thrA), other gene in threonine biosynthesis pathway.

Potential involvement of Drosophila flightless-1 in carbohydrate metabolism

  • Park, Jung-Eun;Jang, Jinho;Lee, Eun Ji;Kim, Su Jung;Yoo, Hyun Ju;Lee, Semin;Kang, Min-Ji
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.462-467
    • /
    • 2018
  • A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes

  • Bolten, Christoph J.;Heinzle, Elmar;Muller, Rolf;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

Qualitative Analysis for Metabolites of Pharmaceuticals Formed in Daphnia magna and Gammarus pulex Using Liquid Chromatogram-High Resolution Mass Spectrometry (LC-HRMS) (LC-HRMS를 이용한 Daphnia magna 및 Gammarus pulex 생체내 의약품 대사체 정성분석)

  • Jeon, Junho
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.243-251
    • /
    • 2018
  • Pharmaceuticals in wastewater effluents have been recognized as emerging pollutants threatening freshwater organisms. To extend understanding for bioaccumulation and toxicity in those organisms, information on biotransformation products (or metabolites) and their metabolic pathway are crucial. The aim of the present study is to identify and elucidate metabolites of pharmaceuticals formed in exposed organisms using suspect and nontarget screening approach using LC-HRMS. As the target pharmaceuticals, carbamazepine, ketoprofen, metoprolol, propranolol, and verapamil were selected whereas Daphnia magna and Gammarus pulex were used as test organisms. After 24h exposure, metabolites formed in the organisms were identified using LC-HRMS. The structures of metabolites were elucidated via analysis of MS/MS fragment pattern and the comparison with fragment database. As the results, a total of 10 metabolites were identified for 5 parent compounds (C253/C356 for carbamazepine, K211 for ketoprofen, M256 for metoprolol, P218/P276/P306 for propranolol, V196/V291/V441 for verapamil). Among them, the presence of C253 and V291 was confirmed using standard materials. Most of the identified metabolites were formed through oxidative reactions such as hydroxylation, N-demethylation, and dealkylation. Cysteine conjugation (phase II reaction) metabolite (C356) for carbamazepine was found in daphnia. The metabolic pathway of verapamil showed similar metabolic pathways and metabolic pathways for both species. Although the toxicological information on the identified metabolites could not be confirmed, the molecular structure information of the proposed metabolites can be used for future evaluation and prediction of toxicity.

NMR-based Metabolomic Responses of Zebrafish (Danio Rerio) by Fipronil Exposure

  • Lee, Sujin;Oh, Sangah;Kim, Seonghye;Lee, Wonho;Choi, Juyoung;Lee, Hani;Lee, Yujin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.104-116
    • /
    • 2020
  • Fipronil, the phenylpyrazole insecticide, is effective and used in various fields. Especially, fipronil was reliable because it was known to be specific on invertebrate animals than vertebrate animals including mammals. However, fipronil had potential risks that affect vertebrate animals as it blocks the gamma-aminobutyric acid (GABA) receptors that also exists in vertebrates as well as invertebrates. Therefore, it was necessary that harmful effects of fipronil on vertebrates are clarified. For this purpose, the zebrafish (Danio rerio) were used on behalf of vertebrate animals in present study. The zebrafish were exposed to 5 ㎍/L, 25 ㎍/L, and 50 ㎍/L of fipronil during 12, 24 and 72 hours. To closely observe toxic process, 12 hours and 24 hours of additional time point were set in the exposure test. Nuclear magnetic resonance (NMR)-based metabolomics is an approach to detect metabolic changes in organism resulted from external stimuli. In this study, NMR-based metabolomics showed the metabolic changes in zebrafish caused by fipronil exposure. Metabolic analysis revealed that fipronil interfered with energy metabolism and decreased the antioxidant ability in zebrafish. Antioxidant ability decline was remarkable at high exposure concentration. In addition, metabolic analysis results over time suggested that reactions for alleviating the excessive nerve excitation occurred in zebrafish after fipronil exposure. Through this study, it was elucidated that the adverse effects of fipronil on vertebrate animals are evident. The risk of fipronil on vertebrates can be no longer ignored. Moreover, this study has a meaning of practically necessary research for organism by examining the effects of fipronil at low concentrations existed in real environment.

From the Sequence to Cell Modeling: Comprehensive Functional Genomics in Escherichia coli

  • Mori, Hirotada
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.83-92
    • /
    • 2004
  • As a result of the enormous amount of information that has been collected with E. coli over the past half century (e.g. genome sequence, mutant phenotypes, metabolic and regulatory networks, etc.), we now have detailed knowledge about gene regulation, protein activity, several hundred enzyme reactions, metabolic pathways, macromolecular machines, and regulatory interactions for this model organism. However, understanding how all these processes interact to form a living cell will require further characterization, quantification, data integration, and mathematical modeling, systems biology. No organism can rival E. coli with respect to the amount of available basic information and experimental tractability for the technologies needed for this undertaking. A focused, systematic effort to understand the E. coli cell will accelerate the development of new post-genomic technologies, including both experimental and computational tools. It will also lead to new technologies that will be applicable to other organisms, from microbes to plants, animals, and humans. E. coli is not only the best studied free-living model organism, but is also an extensively used microbe for industrial applications, especially for the production of small molecules of interest. It is an excellent representative of Gram-negative commensal bacteria. E. coli may represent a perfect model organism for systems biology that is aimed at elucidating both its free-living and commensal life-styles, which should open the door to whole-cell modeling and simulation.