• 제목/요약/키워드: Metabolic Network

검색결과 139건 처리시간 0.02초

Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity

  • Mukhtar, Salma;Malik, Kauser Abdulla;Mehnaz, Samina
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Saline soils comprise more than half a billion hectares worldwide. Thus, they warrant attention for their efficient, economical, and environmentally acceptable management. Halophytes are being progressively utilized for human benefits. The halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in the osmoregulation of halophytes. Microbial communities associated with the rhizosphere, phyllosphere, and endosphere of halophytes play an important role in plant health and productivity. Members of the plant microbiome belonging to domains Archaea, Bacteria, and kingdom Fungi are involved in the osmoregulation of halophytes. Halophilic microorganisms principally use compatible solutes, such as glycine, betaine, proline, trehalose, ectoine, and glutamic acid, to survive under salinity stress conditions. Plant growth-promoting rhizobacteria (PGPR) enhance plant growth and help to elucidate tolerance to salinity. Detailed studies of the metabolic pathways of plants have shown that plant growth-promoting rhizobacteria contribute to plant tolerance by affecting the signaling network of plants. Phytohormones (indole-3-acetic acid and cytokinin), 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, exopolysaccharides, halocins, and volatile organic compounds function as signaling molecules for plants to elicit salinity stress. This review focuses on the functions of plant microbiome and on understanding how the microorganisms affect halophyte health and growth.

Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways

  • Zhong, Xiaohui;Zhang, Feng;Yin, Xinyao;Cao, Hong;Wang, Xuesong;Liu, Dongsong;Chen, Jing;Chen, Xue
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.765-774
    • /
    • 2021
  • Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.

가족성 고콜레스테롤혈증은 언제 의심해야 할까?: 관상동맥 질환이 없는 젊은 이상지질혈증 환자 증례 (When Should Familial Hypercholesterolemia Be Suspected?: A Case of Dyslipidemia in Young Patient without Coronary Artery Disease)

  • 유인선
    • 비만대사연구학술지
    • /
    • 제2권1호
    • /
    • pp.29-35
    • /
    • 2023
  • Familial hypercholesterolemia (FH) is a genetic disease that is not well known or diagnosed in Korea. This disease is associated with persistently high levels of low-density lipoprotein cholesterol (LDL-C), which increase the risk of coronary artery disease at a young age. Therefore, early diagnosis and treatment are important; however, there are no global consensus diagnostic criteria. In Korea, the Dutch Lipid Clinic Network diagnostic criteria, and the Simon Broome diagnostic criteria were used for diagnosis of FH according to the agreement announced at the Korean Society of Lipid and Atherosclerosis (KSoLA) in 2022. Recently, the absence of coronary artery calcification has been considered a good prognostic factor, even among patients with very high LDL-C levels who are considered to be at high risk for atherosclerotic cardiovascular disease. We describe throughout this paper the diagnosis and treatment of FH in a young male without coronary artery calcification.

Gut Microbial Metabolites on Host Immune Responses in Health and Disease

  • Jong-Hwi Yoon;Jun-Soo Do;Priyanka Velankanni;Choong-Gu Lee;Ho-Keun Kwon
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.6.1-6.24
    • /
    • 2023
  • Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.

Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function

  • Changhon Lee;Haena Lee;John Chulhoon Park;Sin-Hyeog Im
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.7.1-7.27
    • /
    • 2023
  • The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors

  • Min-Gyu Gwak;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.20.1-20.18
    • /
    • 2021
  • The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.

Regulatory Roles of MAPK Phosphatases in Cancer

  • Heng Boon Low;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • 제16권2호
    • /
    • pp.85-98
    • /
    • 2016
  • The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.

인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별 (Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy)

  • 이재성;이동수;김석기;박광석;이상건;정준기;이명철
    • 대한핵의학회지
    • /
    • 제38권3호
    • /
    • pp.233-240
    • /
    • 2004
  • 목적: 내 외측 측두엽간질의 감별은 중요하고 F-18-FDG PET이 도움을 주나 성능이 아주 우수하지는 않다. 이 연구에서는 수술과 수술 후 추적 병리소견으로 확진한 내측성 또는 외측성 측두엽간질 환자의 F-18-FDG PET영상을 후향적으로 조사하여 내측 및 외측 측두엽 대사 감소 양상을 추출하고 내측성과 외측성 간질을 감별하기 위한 인공신경회로망을 이용한 감별시스템을 개발하였으며 판독 성능을 핵의학전문가와 비교하였다. 대상 및 방법 : 수술로 확진한 내측성 또는 외측성 측두엽간질 환자 113명(좌 우측 내측성 측두엽간질 각 41, 42명, 좌 우측 외측성 측두엽간질 각 14, 16명)의 뇌 FDG PET을 대상으로 하였다. 모든 PET 영상을 PET 표준지도에 공간정규화하였으며 표준지도에서 추출한 뇌실질 영역의 평균 화소 값이 100이 되도록 계수정규화를 하였다. 표준지도에 미리 정의한34개 영역에서 평균 계수 값을 추출하였으며 마주보는 17개 영역간의 비대칭계수와 내측 및 외측 측두엽간의 비대칭계수를 구하여 신경회로망 시스템의 입력으로 넣었다. 신경회로망 시스템은 세 개의 독립적인 다층 퍼셉트론으로 구성하였다. 첫 번째 퍼셉트론은 간질 원인병소의 편측화(우측 또는 좌측)를 판단하게 하였다. 다른 두개의 퍼셉트론은 우측 또는 좌측 측두엽간질로 나뉘어진 입력 패턴들을 각각 내측성 또는 외측성 측두엽간질로 구분하는 역할을 하게 하였다. 신경회로망 시스템의 감별 성능을 평가하기 위하여 각 환자군에서 무작위로 8명의 PET 영상을 학습군으로 선정하여 신경회로망을 학습시켰으며 나머지 총 81명의 영상으로 신경망 시스템의 진단 정확성을 평가하였다. 이러한 무작위 실험을 50번 시행하여 얻은 신경회로망 시스템의 출력과 진단명과의 일치도를 핵의학 의사의 판독결과와 비교하였다. 핵의학 의사의 판독은 신경회로망과 동일한 조건 하에서 시행되도록 하기 위하여 각 환자가 측두엽간질환자라는 정보이외에는 어떠한 다른 임상정보도 모르는 상태에서 각 환자를 좌측 또는 우측 내측성 측두엽간질이나 좌측 또는 우측 외측성 측두엽간질 중 하나로 감별하도록 하였다. 결과: 내측 또는 외측 측두엽에 대한 최종 국소화가 정확했는지 여부에 관계없이 간질병소가 속한 뇌반구가 좌측인지 우측인지를 맞게 판단하였으면 편측화에 성공한 것으로 보았을 때 신경회로망과 핵의학 전문가가 모두 평균 90% 정도의 높은 편측화 성공률을 보였다. 편측화는 물론 간질병소가 내측에 있는지 외측에 있는지 여부를 정확하게 판단한 국소화 성공률 또한 신경회로망(59%)과 핵의학 전문가(72%)의 진단 성적이 거의 다르지 않았다. 결론: 이 연구에서 개발한 간질병소 국소화를 위한 신경회로망 시스템은 측두엽간질 감별 진단에 도움이 될 것으로 기대된다.

감성과학을 위한 측정기법의 최근 연구 동향 (Recent Trend in Measurement Techniques of Emotion Science)

  • 정효일;박태선;이배환;윤성현;이우영;김왕배
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.235-242
    • /
    • 2010
  • 최근 학제간 교류가 빈번해지고 그 경계마저도 무너지고 있는 추세에서 감성과학에 대한 연구범위는 그 어느 때보다도 넓어지고 있다. 과거 심리학, 환경디자인, 두뇌 신경학 중심의 학제연구를 넘어서 인류학, 사회학, 문화 역사학, 예술, 공학 등 모든 분야에 걸쳐 감성에 대한 관심이 높아지고, 또 이들 간의 견고한 학제연구의 필요성이 제기되고 있다. 본 논문에서는 일차적으로 감성연구의 각 분과학문의 지평 확대를 위해 동물모델을 이용한 감성기법, 인공 후각센서와 뉴런 칩 기술의 적용가능, 감성과학을 이용한 인간 대사조절 등의 연구 가능성을 타진해 보고 향후 감성연구가 심리학이나 의학, 이공계학은 물론 철학, 역사 문화, 사회학 등의 전방위적 학제간 연구로 확장될 필요성을 제시한다. 동물 모델을 이용한 감성측정기법에서는 주로 감성의 근원지를 뇌로 규정하고 뇌신경을 자극했을 때 나타나는 현상 등을 모니터링하는 기법등을 소개한다. 인공후각센서와 뉴런칩에 관한 내용은 최근의 첨단 나노/마이크로 응용기술을 감성과학분야에 적용하려는 사례를 소개하는 것으로 반도체 공정으로 만든 칩위에 후각세포나 신경세포를 키우면서 전기적 신호를 읽는 신기술을 소개한다. 마지막으로 소리를 감성의 한 자극체로 보고 인간의 생리대사, 특히 비만 관리에 있어 감성과학을 응용한 사례를 자세히 보고한다.

  • PDF

Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice

  • Shin, Eun-Ju;Shin, Seul-Mee;Kong, Hyun-Seok;Lee, Sung-Won;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Hwang, In-Kyeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권2호
    • /
    • pp.107-113
    • /
    • 2011
  • Background: Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM complex downregulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-$1{\beta}$ and -6) and $HIF1{\alpha}$ mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-${\kappa}B$ p65 from the cytosol in the WAT. Conclusion: Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.