• Title/Summary/Keyword: Metabolic Activities

Search Result 547, Processing Time 0.036 seconds

Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro (생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향)

  • Kim, Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

Species-specific variation of RPA-interacting protein (RIP) splice isoforms

  • Kim, Kwang-Soo;Lee, Eun-Ju;Lee, Seung-Hoon;Seo, Tae-Gun;Jang, Ik-Soon;Park, Jun-Soo;Lee, Je-Ho
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • Replication Protein A (RPA) is a single stranded DNA-binding protein involved in DNA metabolic activities such as replication, repair, and recombination. RPA-Interacting Protein $\alpha$ ($RIP{\alpha}$) was originally identified as a nuclear transporter of RPA in Xenopus. The human $RIP{\alpha}$ gene encodes several splice isoforms, of which $hRIP{\alpha}$ and $hRIP{\beta}$ are the major translation products in vivo. However, limited information is available about the alternative splicing of $RIP{\alpha}$ in eukaryotes, apart from that in humans. In this study, we examined the alternative splicing of RIP{\alpha} in the Drosophila, Xenopus, and mouse system. We showed that the number of splice isoforms of RIP{\alpha} was species-specific, and displayed a tendency to increase in higher eukaryotes. Moreover, a mouse ortholog of $hRIP{\alpha}$, $mRIP{\beta}2$, was not SUMOylated, in contrast to $hRIP{\alpha}$. Based on these results, we suggest that the $RIP{\alpha}$ gene gains more splice isoforms and additional modifications after molecular evolution.

Induction of the apoptosis of HL -60 leukemia cells by Scytosiphon lomentaria

  • Kim, Sang-Chul;Park, Soo-Young;Hyoun, Jae-Hee;Kang, Ji-Hoon;Lee, Young-Ki;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.81-81
    • /
    • 2003
  • The present study was taken to examine the inhibitory effect of extracts of Scytosiphon lomentaria, a marine alga growing in Jeju Island, on the growth of cancer cells and to develop an anti-cancer agent using components of S. lomemtaria. The effect was observed by the measurement of metabolic activity using colorimetric 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. In results, crude extract of this alga markedly inhibited the growth of leukemia cell lines such as HL-60 and KG-1, but could scarcely inhibit the growth of normal cells (HEL299) and adenocarcinoma cells (SNU-16 and HCT-I5). When HL-60 cells were treated with the extract, DNA fragmentation and the increase of proportion of sub-G1 hypodiploid cells were observed. Therefore, the inhibitory effect of S. lomemtaria on the growth of HL-60 cells seems to arise from the induction of apoptosis. In order to understand the mechanism of apoptosis inducton by S. lomemtaria, we examined the changes of Bcl-2 and Bax expression. The extract reduced Bcl-2, an anti-apoptotic protein, but increased Bax, a pro-apoptotic protein in a dose-dependent manner. When we examined the activation of caspase-3, an effector of apoptosis, the expression of active form(19 kDa) of caspase-3 was increased and the increase of their activities was demonstrated by the cleavage of poly(ADP-ribose)polymerase, a substrate of caspase-3, to 85 kDa. The results indicate that extract of S. lomentaria induces the apoptosis of HL-60 cells via the down-regulation of Bc1-2 and the activation of caspases.

  • PDF

Effect of Ketoconazole, a Cytochrome P450 Inhibitor, on the Efficacy of Quinine and Halofantrine against Schistosoma mansoni in Mice

  • Seif el-Din, Sayed Hassan;Abdel-Aal Sabra, Abdel-Nasser;Hammam, Olfat Ali;El-Lakkany, Naglaa Mohamed
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.165-175
    • /
    • 2013
  • The fear that schistosomes will become resistant to praziquantel (PZQ) motivates the search for alternatives to treat schistosomiasis. The antimalarials quinine (QN) and halofantrine (HF) possess moderate antischistosomal properties. The major metabolic pathway of QN and HF is through cytochrome P450 (CYP) 3A4. Accordingly, this study investigates the effects of CYP3A4 inhibitor, ketoconazole (KTZ), on the antischistosomal potential of these quinolines against Schistosoma mansoni infection by evaluating parasitological, histopathological, and biochemical parameters. Mice were classified into 7 groups: uninfected untreated (I), infected untreated (II), infected treated orally with PZQ (1,000 mg/kg) (III), QN (400 mg/kg) (IV), KTZ (10 mg/kg)+QN as group IV (V), HF (400 mg/kg) (VI), and KTZ (as group V)+HF (as group VI) (VII). KTZ plus QN or HF produced more inhibition (P<0.05) in hepatic CYP450 (85.7% and 83.8%) and CYT b5 (75.5% and 73.5%) activities, respectively, than in groups treated with QN or HF alone. This was accompanied with more reduction in female (89.0% and 79.3%), total worms (81.4% and 70.3%), and eggs burden (hepatic; 83.8%, 66.0% and intestinal; 68%, 64.5%), respectively, and encountering the granulomatous reaction to parasite eggs trapped in the liver. QN and HF significantly (P<0.05) elevated malondialdehyde levels when used alone or with KTZ. Meanwhile, KTZ plus QN or HF restored serum levels of ALT, albumin, and reduced hepatic glutathione (KTZ+HF) to their control values. KTZ enhanced the therapeutic antischistosomal potential of QN and HF over each drug alone. Moreover, the effect of KTZ+QN was more evident than KTZ+HF.

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Responses of Various Biomarkers in Common Carp (Cyprinus carpio) Exposed to Benzo[k]fluoranthene

  • Kim, Woo-Keun;Kim, Ja-Hyun;Yeom, Dong-Hyuk;Lee, Sung-Kyu
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.331-337
    • /
    • 2008
  • Polycyclic aromatic hydrocarbons (PAHs) derived from leakage of fossil fuels and incomplete combustion of organic materials have been considered as harmful contaminants in environments. This study evaluated the effect of benzo[k]fluoranthene (BkF), one of the PAHs, using the multiple biomarkers and applied the integration model with those biomarker responses. After 10 days of the exposure at the measured concentrations of BkF (6, 25, and 45 ${\mu}g\;L^{-1}$), the changes of the four biomarkers, that is, 7-ethoxyresorufin-O-deethylase (EROD), DNA single-strand breaks (Comet), acetylcholinesterase (AChE) and vitellogenin (VTG) in the common carp (Cyprinus carpio) were observed. The standardized values of four biomarker responses were computed and integrated as star plots, representing Integrated Biomarker Respnse (IBR) values. DNA damage was induced in a dose-dependent manner, and increased significantly compared with that in the control. EROD and VTG levels were significantly elevated at low concentrations of BkF. On the other hand, AChE activities were not altered by BkF. IBR values increased as the exposure concentrations increased. Thus, the metabolic, endocrine and genetic changes of the biomarker responses in the common carp exposed to BkF should be considered in the case of the ecological risk assessment of the BkF in fish and it can be used as a biomonitoring tool in aquatic ecosystems. In addition, star plots can be used as a useful analysis tool in multibiomarker integration approach.

Effects of Epidermal Growth Factor and Insulin-like Growth Factor-I on Placental Amino Acids Transport Activities in Rats

  • Ono, Kenichiro
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.34-36
    • /
    • 2002
  • Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) have been shown to stimulate proliferation and differentiation of various somatic cells, including placental trophoblasts and also to enhance fetal growth and development when maternally administered. Since an increase of the expression of placental EGF and IGF-I receptors in rat, mouse, and human with the gestation advanced, both EGF and IGF-I were considered to play pivotal roles on fetal growth by regulating some function of placental cells. Amino acids are crucial importance for both maternal and fetal requirements of energy source and essential constituent of fetal mass during pregnancy. Impaired fetal and placental uptake of amino acids has been observed in several models of growth retardation in the rat. Amino acid is concentrated in the fetal side through active transport by amino acid transporters and is one of the important metabolic fuels for the fatal growth. Therefore, at first plasma amino acid concentrations in mothers and fetuses were measured as an index of uphill transport across the placenta associated with EGF and IGF-1. The EGF administration at the concentration of 0, 0.1, or 0.2 $\mu\textrm{g}$/g to pregnant rats from day 18 to 21 of gestation apparently increased fetal/maternal ratio of serum proline concentration and also fatal growth in EGF dose-dependent manner. When IGF-I in doses of 0, 1, 2, and 4 $\mu\textrm{g}$/g were administrated, the ratio of leucine, isoleucine, tryptophan, phenylalanine, tyrosine and also fetal growth significantly increased with a dose-dependent manner. These results suggested that EGF and IGF-I enhanced fatal growth by, as one of its possible mechanisms, promoting placental activity to transfer some amino acid supplies from the mother to the fetus in late pregnancy.

  • PDF

Studies on Hepatic Microsomal Alcohol Dehydrogenase(ADH) and Aldehyde Dehydrogenase(ALDH) Activities in Rats Treated with Trichloroethylene (Trichloroethylene 처리한 흰쥐의 간 미크로좀 Alcohol dehydrogenase와 Aldehyde dehydrogenase 활성도에 관한 연구)

  • Kim, Ki-Woong;Kang, Seong Kyu;Yang, Jeong Sun;Park, In-Jeong;Moon, Young-Hahn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.148-156
    • /
    • 1994
  • Chloral hydrate(CH), an intermediate metabolite of trichloroethylene(TRI) is reduced to trichloroethanol(TCE-OH), and is oxidized to trichloroacetic acid(TCA) by the nicotinamide adenine dinucleotide(NAD)-dependent enzymes such as alcohol dehydrogenase(ADH) and aldehyde dehydrogenase(ALDH) in liver. This study was performed to find out the change of activity of ADH and ALDH with increasing amount of TRI. Intraperitoneal injection of TRI were done to the male Sprague Dawely rats(mean body weight, $170{\pm}10g$) in com oil at the dosage of 150, 300, 600 mg/kg for 2 days. The results of experiments are following : 1. The contents of xenobiotic metabolic enzymes in liver are tended to be decreased with increasing amount of, but not significantlly (p>0.05). 2. Activity of ADH in microsome is decreased(p<0.05), and activity of ALDH is increased with amount of TRI(P<0.05). 3. Total trichloro-compounds(TTC) concentration in urine are increased with amount of TRI, but the ratio of between the TCE-OH and the TCA were not shown any critical change. These results suggests that the ALDH in microsome may be related to metabolism of TRI, but ADH was nothing less than the effected to metabolism of TRI.

  • PDF

Molecular Mechanism of Dietary Restriction in Neuroprevention and Neurogenesis: Involvement of Neurotrophic Factors

  • Park, Hee-Ra;Park, Mi-Kyung;Kim, Hyung-Sik;Lee, Jae-Won
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.245-251
    • /
    • 2008
  • Dietary restriction (DR) is the most efficacious intervention for retarding the deleterious effects of aging. DR increases longevity, decreases the occurrence and severity of age-related diseases, and retards the physiological decline associated with aging. The beneficial effects of DR have been mostly studied in non-neuronal tissues. However, several studies have showed that DR attenuate neuronal loss after several different insults including exposure to kainate, ischemia, and MPTP. Moreover, administration of the non-metabolizable glucose analog 2-deoxy-D-glucose (2DG) could mimic the neuroprotective effect of DR in rodent, presumably by limiting glucose availability at the cellular level. Based on the studies of chemically induced DR, it has been proposed that the mechanism whereby DR and 2DG protect neurons is largely mediated by stress response proteins such as HSP70 and GRP78 which are increased in neurons of rats and mice fed a DR regimen. In addition, DR, as mild metabolic stress, could lead to the increased activity in neuronal circuits and thus induce expression of neurotrophic factors. Interestingly, such increased neuronal activities also enhance neurogenesis in the brains of adult rodents. In this review, we focus on what is known regarding molecular mechanisms of the protective role of DR in neurodegenerative diseases and aging process. Also, we propose that DR is a mild cellular stress that stimulates production of neurotrophic factors, which are major regulators of neuronal survival, as well as neurogenesis in adult brain.

Saponarin content and biosynthesis-related gene expression in young barley (Hordeum vulgare L.) seedlings

  • Lee, HanGyeol;Woo, So-Yeun;Ra, Ji-Eun;Lee, Kwang-Sik;Seo, Woo Duck;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Flavonoids are widely distributed secondary metabolites in plants that have a variety biological functions, as well as beneficial biological and pharmacological activities. In barley (Hordeum vulgare L.), for example, high levels of saponarin accumulate during primary leaf development. However, the effect of saponarin biosynthetic pathway genes on the accumulation of saponarin in barley is poorly understood. Accordingly, the aim of the present study was to examine the saponarin contents and expression levels of saponarin biosynthetic pathway genes [chalcone synthase (CHS), chalcone isomerase (CHI), and UDP-Glc:isovitexin 7-O-glucosyltransferase (OGT)] during early seedling developmental and under several abiotic stress conditions. Interestingly, the upregulation of HvCHS, HvCHI, and HvOGT during early development was associated with saponarin accumulation during later stages. In addition, exposure to abiotic stress conditions (e.g., light/dark transition, drought, and low or high temperature) significantly affected the expression of HvCHS and HvCHI but failed to affect either HvOGT expression or saponarin accumulation. These findings suggested that the expression of HvOGT, which encodes an enzyme that catalyzes the final step of saponarin biosynthesis, is required for saponarin accumulation. Taken together, the results of the present study provide a basis for metabolic engineering in barley plants, especially in regards to enhancing the contents of useful secondary metabolites, such as saponarin.