Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.1
/
pp.35-40
/
2015
The paper proposes a meta-learning approach for building multi-classifier systems in a GA-based inductive learning environment. In our meta-learning approach, a classifier consists of a general classifier and a meta-classifier. We obtain a meta-classifier from classification results of its general classifier by applying a learning algorithm to them. The role of the meta-classifier is to evaluate the classification result of its general classifier and decide whether to participate into a final decision-making process or not. The classification system draws a decision by combining classification results that are evaluated as correct ones by meta-classifiers. We present empirical results that evaluate the effect of our meta-learning approach on the performance of multi-classifier systems.
DELVAUX is an inductive learning environment that learns Bayesian classification rules from a set o examples. In DELVAUX, a genetic a, pp.oach is employed to learn the best rule-set, in which a population consists of rule-sets and rule-sets generate offspring by exchanging some of their rules. We have explored a meta-learning a, pp.oach in the DELVAUX learning environment to improve the classification performance of the DELVAUX system. The meta-learning a, pp.oach learns the bias of a classifier so that it can evaluate the prediction made by the classifier for a given example and thereby improve the overall performance of a classifier system. The paper discusses the meta-learning a, pp.oach in details and presents some empirical results that show the improvement we can achieve with the meta-learning a, pp.oach.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2067-2081
/
2024
Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.
The Science Writing Heuristic (SWH) approach is described as an immersive argument-based science inquiry focusing particularly on learning through epistemic practices. In the literature, several previous studies indicate how academic achievement is positively influenced by the SWH. In addition to these previous studies, several meta-syntheses of qualitative data have been conducted on this particular topic. With these literatures in mind, a quantitative meta-analysis was conducted with ten studies (N = 724) to examine the effectiveness of the SWH on student achievement in Turkey. To present a thoroughly detailed report, this study also examined the following moderators: grade level, subject area, school location, intervention length, and report source. Overall, this study found that in Turkey, the SWH classrooms performed better in academic achievement tests than traditional lecture-based classrooms. Additionally, the SWH is more likely to be effective regardless of grade levels, subject areas, and school locations.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.5
/
pp.1755-1777
/
2022
The development of wireless communication technology has led to the underutilization of radio spectra. To address this limitation, an intelligent cognitive radio network was developed. Specific emitter identification (SEI) is a key technology in this network. However, in realistic non-cooperative scenarios, the system may detect signal classes beyond those in the training database, and only a few labeled signal samples are available for network training, both of which deteriorate identification performance. To overcome these challenges, a meta-learning-based open-set identification system is proposed for SEI. First, the received signals were pre-processed using bi-spectral analysis and a Radon transform to obtain signal representation vectors, which were then fed into an open-set SEI network. This network consisted of a deep feature extractor and an intrinsic feature memorizer that can detect signals of unknown classes and classify signals of different known classes. The training loss functions and the procedures of the open-set SEI network were then designed for parameter optimization. Considering the few-shot problems of open-set SEI, meta-training loss functions and meta-training procedures that require only a few labeled signal samples were further developed for open-set SEI network training. The experimental results demonstrate that this approach outperforms other state-of-the-art SEI methods in open-set scenarios. In addition, excellent open-set SEI performance was achieved using at least 50 training signal samples, and effective operation in low signal-to-noise ratio (SNR) environments was demonstrated.
Journal of the Korean Society of Systems Engineering
/
v.19
no.2
/
pp.18-31
/
2023
Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.
Reinforcement learning takes reward about selecting action when agent chooses some action and did state transition in Present state. this can be the important subject in reinforcement learning as temporal-credit assignment problems. In this paper, by new meta heuristic method to solve hard combinational optimization problem, examine Ant-Q learning method that is proposed to solve Traveling Salesman Problem (TSP) to approach that is based for population that use positive feedback as well as greedy search. And, suggest Ant-TD reinforcement learning method that apply state transition through diversification strategy to this method and TD-error. We can show through experiments that the reinforcement learning method proposed in this Paper can find out an optimal solution faster than other reinforcement learning method like ACS and Ant-Q learning.
Journal of The Korean Association For Science Education
/
v.32
no.8
/
pp.1295-1317
/
2012
There has been disagreement on the importance of definitions in science education. Yager (1983) believes that one crisis in science education was due to the considerable emphasis upon the learning of definitions. Hobson (2004) disagrees with physics textbooks that do not provide general definition on energy. Some textbooks explain that "there is no completely satisfactory definition of energy" or they can only "struggle to define it." In general, imprecise definitions in textbooks (Bauman, 1992) and inaccuracies in definition provided by teachers (Galili & Lehavi, 2006) may cause alternative conceptions. Besides, there are at least four challenges in defining physical concepts: precision, circularity, context and completeness in knowledge. These definitional problems that have been discussed in The Feynman Lectures, may impede the learning of physical concepts. A meta-study approach is employed to examine about five hundreds journal papers that may discuss definitions in physics, problems in defining physical concepts and how they may result in alternative conceptions. These journal papers are mainly selected from journals such as American Journal of Physics, International Journal of Science Education, Journal of Research in Science Teaching, Physics Education, The Physics Teachers, and so on. There are also comparisons of definitions with definitions from textbooks, Dictionaries of Physics, and English Dictionaries. To understand the nature of alternative conception, Lee et al. (2010) have suggested a theoretical framework to describe the learning issues by synthesizing cognitive psychology and science education approaches. Taking it a step further, this study incorporates the challenges in semantics and epistemology, proposes that there are at least four variants of alternative conceptions. We may coin the term, 'alternative definitions', to refer to the commonly available definitions, which have these four problems in defining physics concepts. Based on this study, alternative definitions may result in at least four variants of alternative conceptions. Note that these four definitional problems or challenges in definitions cannot be easily resolved. Educators should be cognizant of the four variants of alternative conceptions which can arise from alternative definitions. The concepts of alternative definitions can be useful and possibly generalized to science education and beyond.
Journal of the Korean Society of Systems Engineering
/
v.18
no.2
/
pp.75-93
/
2022
Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.551-553
/
1999
This paper explores the utility of a new classifier fusion approach to discrimination. Multiple classifier fusion, a popular approach in the field of pattern recognition, uses estimates of each individual classifier's local accuracy on training data sets. In this paper we investigate the effectiveness of fusion methods compared to individual algorithms, including the artificial neural network and k-nearest neighbor techniques. Moreover, we propose an efficient meta-classifier architecture based on an approximation of the posterior Bayes probabilities for learning the oracle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.