• Title/Summary/Keyword: Meta-learning Approach

Search Result 40, Processing Time 0.026 seconds

A Meta-learning Approach for Building Multi-classifier Systems in a GA-based Inductive Learning Environment (유전 알고리즘 기반 귀납적 학습 환경에서 다중 분류기 시스템의 구축을 위한 메타 학습법)

  • Kim, Yeong-Joon;Hong, Chul-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • The paper proposes a meta-learning approach for building multi-classifier systems in a GA-based inductive learning environment. In our meta-learning approach, a classifier consists of a general classifier and a meta-classifier. We obtain a meta-classifier from classification results of its general classifier by applying a learning algorithm to them. The role of the meta-classifier is to evaluate the classification result of its general classifier and decide whether to participate into a final decision-making process or not. The classification system draws a decision by combining classification results that are evaluated as correct ones by meta-classifiers. We present empirical results that evaluate the effect of our meta-learning approach on the performance of multi-classifier systems.

A Meta-learning Approach that Learns the Bias of a Classifier

  • 김영준;홍철의;김윤호
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.83-91
    • /
    • 1997
  • DELVAUX is an inductive learning environment that learns Bayesian classification rules from a set o examples. In DELVAUX, a genetic a, pp.oach is employed to learn the best rule-set, in which a population consists of rule-sets and rule-sets generate offspring by exchanging some of their rules. We have explored a meta-learning a, pp.oach in the DELVAUX learning environment to improve the classification performance of the DELVAUX system. The meta-learning a, pp.oach learns the bias of a classifier so that it can evaluate the prediction made by the classifier for a given example and thereby improve the overall performance of a classifier system. The paper discusses the meta-learning a, pp.oach in details and presents some empirical results that show the improvement we can achieve with the meta-learning a, pp.oach.

  • PDF

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

A Meta-Analytic Review of the Effectiveness of the Science Writing Heuristic Approach on Academic Achievement in Turkey

  • Bae, Yejun;Sahin, Ercin
    • Research in Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.175-199
    • /
    • 2021
  • The Science Writing Heuristic (SWH) approach is described as an immersive argument-based science inquiry focusing particularly on learning through epistemic practices. In the literature, several previous studies indicate how academic achievement is positively influenced by the SWH. In addition to these previous studies, several meta-syntheses of qualitative data have been conducted on this particular topic. With these literatures in mind, a quantitative meta-analysis was conducted with ten studies (N = 724) to examine the effectiveness of the SWH on student achievement in Turkey. To present a thoroughly detailed report, this study also examined the following moderators: grade level, subject area, school location, intervention length, and report source. Overall, this study found that in Turkey, the SWH classrooms performed better in academic achievement tests than traditional lecture-based classrooms. Additionally, the SWH is more likely to be effective regardless of grade levels, subject areas, and school locations.

Meta learning-based open-set identification system for specific emitter identification in non-cooperative scenarios

  • Xie, Cunxiang;Zhang, Limin;Zhong, Zhaogen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1755-1777
    • /
    • 2022
  • The development of wireless communication technology has led to the underutilization of radio spectra. To address this limitation, an intelligent cognitive radio network was developed. Specific emitter identification (SEI) is a key technology in this network. However, in realistic non-cooperative scenarios, the system may detect signal classes beyond those in the training database, and only a few labeled signal samples are available for network training, both of which deteriorate identification performance. To overcome these challenges, a meta-learning-based open-set identification system is proposed for SEI. First, the received signals were pre-processed using bi-spectral analysis and a Radon transform to obtain signal representation vectors, which were then fed into an open-set SEI network. This network consisted of a deep feature extractor and an intrinsic feature memorizer that can detect signals of unknown classes and classify signals of different known classes. The training loss functions and the procedures of the open-set SEI network were then designed for parameter optimization. Considering the few-shot problems of open-set SEI, meta-training loss functions and meta-training procedures that require only a few labeled signal samples were further developed for open-set SEI network training. The experimental results demonstrate that this approach outperforms other state-of-the-art SEI methods in open-set scenarios. In addition, excellent open-set SEI performance was achieved using at least 50 training signal samples, and effective operation in low signal-to-noise ratio (SNR) environments was demonstrated.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

A Reinforcement Loaming Method using TD-Error in Ant Colony System (개미 집단 시스템에서 TD-오류를 이용한 강화학습 기법)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.77-82
    • /
    • 2004
  • Reinforcement learning takes reward about selecting action when agent chooses some action and did state transition in Present state. this can be the important subject in reinforcement learning as temporal-credit assignment problems. In this paper, by new meta heuristic method to solve hard combinational optimization problem, examine Ant-Q learning method that is proposed to solve Traveling Salesman Problem (TSP) to approach that is based for population that use positive feedback as well as greedy search. And, suggest Ant-TD reinforcement learning method that apply state transition through diversification strategy to this method and TD-error. We can show through experiments that the reinforcement learning method proposed in this Paper can find out an optimal solution faster than other reinforcement learning method like ACS and Ant-Q learning.

Can Definitions Contribute to Alternative Conceptions?: A Meta-Study Approach

  • Wong, Chee Leong;Yap, Kueh Chin
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.8
    • /
    • pp.1295-1317
    • /
    • 2012
  • There has been disagreement on the importance of definitions in science education. Yager (1983) believes that one crisis in science education was due to the considerable emphasis upon the learning of definitions. Hobson (2004) disagrees with physics textbooks that do not provide general definition on energy. Some textbooks explain that "there is no completely satisfactory definition of energy" or they can only "struggle to define it." In general, imprecise definitions in textbooks (Bauman, 1992) and inaccuracies in definition provided by teachers (Galili & Lehavi, 2006) may cause alternative conceptions. Besides, there are at least four challenges in defining physical concepts: precision, circularity, context and completeness in knowledge. These definitional problems that have been discussed in The Feynman Lectures, may impede the learning of physical concepts. A meta-study approach is employed to examine about five hundreds journal papers that may discuss definitions in physics, problems in defining physical concepts and how they may result in alternative conceptions. These journal papers are mainly selected from journals such as American Journal of Physics, International Journal of Science Education, Journal of Research in Science Teaching, Physics Education, The Physics Teachers, and so on. There are also comparisons of definitions with definitions from textbooks, Dictionaries of Physics, and English Dictionaries. To understand the nature of alternative conception, Lee et al. (2010) have suggested a theoretical framework to describe the learning issues by synthesizing cognitive psychology and science education approaches. Taking it a step further, this study incorporates the challenges in semantics and epistemology, proposes that there are at least four variants of alternative conceptions. We may coin the term, 'alternative definitions', to refer to the commonly available definitions, which have these four problems in defining physics concepts. Based on this study, alternative definitions may result in at least four variants of alternative conceptions. Note that these four definitional problems or challenges in definitions cannot be easily resolved. Educators should be cognizant of the four variants of alternative conceptions which can arise from alternative definitions. The concepts of alternative definitions can be useful and possibly generalized to science education and beyond.

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.

Metalevel Data Mining through Multiple Classifier Fusion (다수 분류기를 이용한 메타레벨 데이터마이닝)

  • 김형관;신성우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.551-553
    • /
    • 1999
  • This paper explores the utility of a new classifier fusion approach to discrimination. Multiple classifier fusion, a popular approach in the field of pattern recognition, uses estimates of each individual classifier's local accuracy on training data sets. In this paper we investigate the effectiveness of fusion methods compared to individual algorithms, including the artificial neural network and k-nearest neighbor techniques. Moreover, we propose an efficient meta-classifier architecture based on an approximation of the posterior Bayes probabilities for learning the oracle.

  • PDF