• 제목/요약/키워드: Meta-Heuristic

검색결과 215건 처리시간 0.032초

Harmony Search Algorithm-Based Approach For Discrete Size Optimization of Truss Structures

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.351-358
    • /
    • 2005
  • Many methods have been developed and are in use for structural size optimization problems, In which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary In this paper, a discrete search strategy using the HS algorithm is presented in detail and its effectiveness and robustness, as compared to current discrete optimization methods, are demonstrated through a standard truss example. The numerical results reveal that the proposed method is a powerful search and design optimization tool for structures with discrete-sized members, and may yield better solutions than those obtained using current method.

  • PDF

A Nature-inspired Multiple Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.702-723
    • /
    • 2020
  • The application of machine learning (ML) in intrusion detection has attracted much attention with the rapid growth of information security threat. As an efficient multi-label classifier, kernel extreme learning machine (KELM) has been gradually used in intrusion detection system. However, the performance of KELM heavily relies on the kernel selection. In this paper, a novel multiple kernel extreme learning machine (MKELM) model combining the ReliefF with nature-inspired methods is proposed for intrusion detection. The MKELM is designed to estimate whether the attack is carried out and the ReliefF is used as a preprocessor of MKELM to select appropriate features. In addition, the nature-inspired methods whose fitness functions are defined based on the kernel alignment are employed to build the optimal composite kernel in the MKELM. The KDD99, NSL and Kyoto datasets are used to evaluate the performance of the model. The experimental results indicate that the optimal composite kernel function can be determined by using any heuristic optimization method, including PSO, GA, GWO, BA and DE. Since the filter-based feature selection method is combined with the multiple kernel learning approach independent of the classifier, the proposed model can have a good performance while saving a lot of training time.

An Innovative Fast Relay Coordination Method to Bypass the Time Consumption of Optimization Algorithms in Relay Protection Coordination

  • Kheshti, Mostafa;Kang, Xiaoning;Jiao, Zaibin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.612-620
    • /
    • 2017
  • Relay coordination in power system is a complex problem and so far, meta-heuristic algorithms and other methods as an alternative approach may not properly deal with large scale relay coordination due to their huge time consuming computation. In some cases the relay coordination could be unachievable. As the urgency for a proper approach is essential, in this paper an innovative and simple relay coordination method is introduced that is able to be applied on optimization algorithms for relay protection coordination. The objective function equation of operating time of relays are divided into two separate functions with less constraints. As the analytical results show here, this equivalent method has a remarkable speed with high accuracy to coordinate directional relays. Two distribution systems including directional overcurrent relays are studied in DigSILENT software and the collected data are examined in MATLAB. The relay settings of this method are compared with particle swarm optimization and genetic algorithm. The analytical results show the correctness of this mathematical and practical approach. This fast coordination method has a proper velocity of convergence with low iteration that can be used in large scale systems in practice and also to provide a feasible solution for protection coordination in smart grids as online or offline protection coordination.

The Optimal Design for Noise Reduction of the Intake System in Automobile Using Kriging Model (크리깅을 이용한 자동차 흡기계의 소음 저감에 대한 최적 설계)

  • Sim Hyoun-Jin;Ryu Je-Seon;Cha Kyung-Joon;Oh Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제30권4호
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, the regulations of the government and the concerns of people have rise to the interest in noise pollution levels as compared to other vehicles. In this area, many researchers have studied to reduce this noise in the field of automotive engineering. This paper proposes an optimal design scheme to reduce the noise of the intake system by adapting Kriging with two meta-heuristic techniques. For this, as a measuring tool for the performance of the intake system, the performance prediction software, was used. Then, the length and radius of each component of the current intake system are selected as input variables and the orthogonal arrays is adapted as a space-filling design. With these simulated data, we can estimate a correlation parameter in Kriging by solving the nonlinear problem with a genetic algorithm and find an optimal level for the intake system by optimizing Kriging estimated with simulated annealing. We notice that this optimal design scheme gives noticeable results and is a preferable way to analyze the intake system. Therefore, an optimal design for the intake system is proposed by reducing the noise of its system.

A Hybrid Metaheuristic for the Series-parallel Redundancy Allocation Problem in Electronic Systems of the Ship

  • Son, Joo-Young;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.341-347
    • /
    • 2011
  • The redundancy allocation problem (RAP) is a famous NP.complete problem that has beenstudied in the system reliability area of ships and airplanes. Recently meta-heuristic techniques have been applied in this topic, for example, genetic algorithms, simulated annealing and tabu search. In particular, tabu search (TS) has emerged as an efficient algorithmic approach for the series-parallel RAP. However, the quality of solutions found by TS depends on the initial solution. As a robust and efficient methodology for the series-parallel RAP, the hybrid metaheuristic (TSA) that is a interactive procedure between the TS and SA (simulated annealing) is developed in this paper. In the proposed algorithm, SA is used to find the diversified promising solutions so that TS can re-intensify search for the solutions obtained by the SA. We test the proposed TSA by the existing problems and compare it with the SA and TS algorithm. Computational results show that the TSA algorithm finds the global optimal solutions for all cases and outperforms the existing TS and SA in cases of 42 and 56 subsystems.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각홴의 저소음 설계)

  • Sim, Hyoun-Jin;Park, Sang-Gul;Joe, Yong-Goo;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제19권5호
    • /
    • pp.509-515
    • /
    • 2009
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각팬의 저소음 설계)

  • Sim, Hyoun-Jin;Lee, Hae-Jin;Lee, You-Yub;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1307-1312
    • /
    • 2007
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the Optimal Design for Noise Reduction of the Engine Cooling Fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

  • PDF

Optimal and Approximate Solutions of Object Functions for Base Station Location Problem (기지국 위치 문제를 위한 목적함수의 최적해 및 근사해)

  • Sohn, Surg-Won
    • The KIPS Transactions:PartC
    • /
    • 제14C권2호
    • /
    • pp.179-184
    • /
    • 2007
  • The problem of selecting base station location in the design of mobile communication system has been basically regarded as a problem of assigning maximum users in the cell to the minimum base stations while maintaining minimum SIR. and it is NP hard. The objective function of warehouse location problem, which has been used by many researchers, is not proper function in the base station location problem in CDMA mobile communication, The optimal and approximate solutions have been presented by using proposed object function and algorithms of exact solution, and the simulation results have been assessed and analyzed. The optimal and approximate solutions are found by using mixed integer programming instead of meta-heuristic search methods.

A Tabu Search Algorithm for the Vehicle Routing Problem with Time Window and Dock Capacity Constraints (시간제약과 하역장 용량제약이 있는 차량경로문제에 대한 타부탐색 알고리즘)

  • Zang Heejeong;Lee Kyungsik;Choi Eunjeung;Park Sungsoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제30권4호
    • /
    • pp.45-60
    • /
    • 2005
  • We consider a vehicle routing problem with time window and dock capacity constraints (VRPTD). In most traditional models of vehicle routing problems with time window (VRPTW), each customer must be assigned to only one vehicle route. However demand of a customer may exceed the capacity of one vehicle, hence at least two vehicles may need to visit the customer We assume that each customer has Its own dock capacity. Hence, the customer can be served by only a limited number of vehicles simultaneously. Given a depot, customers, their demands, their time windows and dock capacities, VRPTD is to get a set of feasible routes which pass the depot and some customers such that all demands of each customer are satisfied Since VRPTD is NP-hard, a meta-heuristic algorithm is developed. The algorithm consists of two Procedures : the route construction procedure and the route scheduling procedure. We tested the algorithm on a number of instances and computational results are reported.

Symbiotic organisms search algorithm based solution to optimize both real power loss and voltage stability limit of an electrical energy system

  • Pagidi, Balachennaiah;Munagala, Suryakalavathi;Palukuru, Nagendra
    • Advances in Energy Research
    • /
    • 제4권4호
    • /
    • pp.255-274
    • /
    • 2016
  • This paper presents a novel symbiotic organisms search (SOS) algorithm to optimize both real power loss (RPL) and voltage stability limit (VSL) of a transmission network by controlling the variables such as unified power flow controller (UPFC) location, UPFC series injected voltage magnitude and phase angle and transformer taps simultaneously. Mathematically, this issue can be formulated as nonlinear equality and inequality constrained multi objective, multi variable optimization problem with a fitness function integrating both RPL and VSL. The symbiotic organisms search (SOS) algorithm is a nature inspired optimization method based on the biological interactions between the organisms in ecosystem. The advantage of SOS algorithm is that it requires a few control parameters compared to other meta-heuristic algorithms. The proposed SOS algorithm is applied for solving optimum control variables for both single objective and multi-objective optimization problems and tested on New England 39 bus test system. In the single objective optimization problem only RPL minimization is considered. The simulation results of the proposed algorithm have been compared with the results of the algorithms like interior point successive linear programming (IPSLP) and bacteria foraging algorithm (BFA) reported in the literature. The comparison results confirm the efficacy and superiority of the proposed method in optimizing both single and multi objective problems.