Journal of Elementary Mathematics Education in Korea
/
v.22
no.2
/
pp.143-159
/
2018
Since the mathematics learning achievement level is closely related to problem-solving ability, it is necessary to understand the relationship between problem-solving ability and meta-affect ability from the point of view of general mathematics learning ability. In this study, we compared the frequency analysis and the case analysis of the functional aspects of the meta-affect in elementary school students' problem-solving processes according to mathematics learning achievement level in parallel with frequency analysis and case analysis. In other words, the frequency of occurrence of meta-affect, the frequency of meta-affective type, and the frequency of meta-functional types of meta-affect were compared and analyzed according to the mathematics learning achievement level in the collaborative problem-solving activities of small group members with similar mathematics learning achievement level. In addition, we analyzed the representative cases of meta-affect by meta-functional types according to the mathematics learning achievement level in detail. As a result, meta-affect in problem-solving processes of the upper level group acted as relatively various types of meta-functions compared to the lower level group. And, the lower level group, the more affective factors acted in the problem-solving processes.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2067-2081
/
2024
Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.
The Journal of Korean Academic Society of Nursing Education
/
v.18
no.2
/
pp.323-331
/
2012
Purpose: Level of meta-cognition of students has been regarded as one of the crucial factors on web-based learning. This study aimed to describe interaction type in small group discussion of the nursing graduate students and to investigate learning consequences and interaction types in group discussion on meta-cognition level. Method: Twenty six graduate nursing students attending the class on-line at the K university in Seoul were included in the study. We measured their meta-cognition level and learning attitude. We also scored their individual and group reports as well as analyzed interaction type by reviewing the dialogue of the group discussion. Results: The participants showed low frequency of exploratory interaction and high frequency of integrative interaction in the cognitive interaction category. They showed frequent modification interaction in the meta-cognitive interaction category. Interestingly, the students with lower level of meta-cognition achieved significantly greater scores in the individual assignments. High functioning group consisting of the students with high meta-cognitive level produced greater group report. Conclusion: A new strategy is needed to encourage in-depth interaction in a group discussion of nursing students. Meta-cognitive level of the students should be considered to form a small group for discussion in order to improve group activities.
Objectives: The aim of this study was to suggest a method for training students majoring in dental hygiene with a sense of professionalism by identifying meta-cognition, efficient learning strategies, and self-directedness necessary to become a spontaneous, self-controlled learner. Methods: A survey was conducted on 316 students majoring in dental hygiene, and collected data were analyzed using SPSS, version 23.0. A post-hoc analysis was performed using descriptive statistics, t-test, analysis of variance, and Duncan's multiple range test, and Pearson's correlation coefficient was used to assess the relationship among meta-cognition, learning strategy, and self-directedness. Results: The meta-cognition, learning strategy, and self-directedness scores of students majoring in dental hygiene were 3.25, 3.08, and 3.12, respectively. Meta-cognition was significant because the grade was lower, and the previous semester grade and major satisfaction were higher. Learning strategy was significant because the previous semester grade and major satisfaction were higher among general high school students. Self-directedness was significantly low in students whose self-conviction score was below 2.0 in terms of the previous semester grade and significantly high with high self-satisfaction. Conclusions: Instructors at the dental hygiene department should acknowledge the importance of meta-cognition, find various teaching methods to improve learning strategy, and encourage students to participate in class by enhancing self-directedness in learning.
The aim of this study was to perform a meta-analysis of the learning outcomes of immersive learning technologies in English language teaching (ELT). This study examined 12 articles, yielding a total of 20 effect sizes. The Comprehensive Meta-Analysis (CMA) program was employed for data analysis. The findings revealed that the overall effect size was 0.84, implying a large effect size. Additionally, the mean effect sizes of the dependent variables revealed a large effect size for both the cognitive and affective domains. Furthermore, the study analyzed the impact of moderator variables such as sample scale, technology type, tool type, work type, program type, duration (sessions), the degree of immersion, instructional technique, and augmented reality (AR) type. Among the moderators, the degree of immersion was found to be statistically significant. In conclusion, the study results suggested that immersive learning technologies had a positive impact on learning in ELT.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.1
/
pp.95-100
/
2021
This paper introduces model-based meta reinforcement learning as a control for the manipulator of an underwater construction robot. Model-based meta reinforcement learning updates the model fast using recent experience in a real application and transfers the model to model predictive control which computes control inputs of the manipulator to reach the target position. The simulation environment for model-based meta reinforcement learning is established using MuJoCo and Gazebo. The real environment of manipulator control for underwater construction robot is set to deal with model uncertainties.
Recently, after the reorganization as the basis of NCS education, various learning methods are being sought for improving the basic occupational ability and job ability required by NCS, and the evaluation method accordingly is urgently needed. The purpose of this study was to evaluate the applicability of meta-cognitive learning and Havruta learning as evaluation cases in order to improve the job skills and basic skills required in the NCS curriculum. As a result, the meta-cognitive learning response sample statistic showed an average of 2.6883 when the pre-meta-cognitive learning questionnaire was a 5-point scale, and an average of 4.2468 after the meta-cognitive learning questionnaire. The correlation coefficient was 0.782 and the significance probability was 0.045. In the case of the Havruta learning correspondence sample statistic, the average of 3.1515 when the preliminary Havruta learning questionnaire was a 5 point scale and the average of the post-Havruta learning questionnaire was 4.3853, which was improved by 1.23 points. The correlation coefficient was 0.631 and the significance probability was 0.049. Meta-cognitive learning and Havruta learning were found to be correlated. The mean of meta cognition was 3.4675 and the mean of Havruta was 3.7684. Metacognitive learning and Havruta learning were -0.042 And there was no statistically significant difference. Therefore, the learning method to improve the job ability should be applied considering the characteristics of the subject.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.217-239
/
2010
This study is to understanding characteristics of Mathematical gifted children by comparing and analyzing of the learning strategies between gifted children and average students. The result of this study is as below. First, the mathematical gifted children's application ability on the cognitive meta-cognitive strategies and learning resources management strategies was higher than average students. Second, in case of learning resources management strategies between gender, male mathematical gifted students's t-test showed higher than female gifted students. Also, in case of average students, male student's t-test for the learning motive was higher than average female students. Third, mathematical gifted children are positive correlation among the learning motive, self-efficacy, cognitive meta-cognitive strategies, and learning resources management strategies. And in case of average student, it had a positive correlation among the learning motive, self-efficacy, and cognitive meta-cognitive strategies. But there is no correlation between learning strategies and cognitive meta-cognitive strategies.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.3
/
pp.689-696
/
2015
In this study, a learning system based on smart learning is proposed so that students with learning disabilities can learn the effective use of meta-cognitive to solve problems arising during the learning process. The features of the proposed system are as follow. First, it is possible to achieve students' individualized learning by use of smart devices and smart education system. Second, it is possible to provide the constant repetition learning for students. Third, students can improve their achievement using the proposed app. The proposed smart education system using meta-cognition was applied to some learning disabilities students. The following results were obtained. First, the disabled students could have an interest in learning math and improve confidence. Second, the student's mathematical problem-solving skills have improved. Third, students' individualized and self-directed learning was achieved.
Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.